論文の概要: An Aspect Extraction Framework using Different Embedding Types, Learning Models, and Dependency Structure
- arxiv url: http://arxiv.org/abs/2503.03512v1
- Date: Wed, 05 Mar 2025 13:57:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:53:30.326543
- Title: An Aspect Extraction Framework using Different Embedding Types, Learning Models, and Dependency Structure
- Title(参考訳): 異なる埋め込み型, 学習モデル, 依存構造を用いたアスペクト抽出フレームワーク
- Authors: Ali Erkan, Tunga Güngör,
- Abstract要約: アスペクトベースの感情分析の重要な構成要素はアスペクト抽出である。
本稿では,単語と音声のパート・オブ・音声タグに異なる種類の埋め込みを用いたアスペクト抽出モデルを提案する。
また、文のアスペクト位置をよりよく捉えるために、依存性解析出力に基づく木の位置符号化を提案する。
- 参考スコア(独自算出の注目度): 0.0657714808721181
- License:
- Abstract: Aspect-based sentiment analysis has gained significant attention in recent years due to its ability to provide fine-grained insights for sentiment expressions related to specific features of entities. An important component of aspect-based sentiment analysis is aspect extraction, which involves identifying and extracting aspect terms from text. Effective aspect extraction serves as the foundation for accurate sentiment analysis at the aspect level. In this paper, we propose aspect extraction models that use different types of embeddings for words and part-of-speech tags and that combine several learning models. We also propose tree positional encoding that is based on dependency parsing output to capture better the aspect positions in sentences. In addition, a new aspect extraction dataset is built for Turkish by machine translating an English dataset in a controlled setting. The experiments conducted on two Turkish datasets showed that the proposed models mostly outperform the studies that use the same datasets, and incorporating tree positional encoding increases the performance of the models.
- Abstract(参考訳): アスペクトに基づく感情分析は、エンティティの特定の特徴に関連する感情表現にきめ細かい洞察を与える能力により、近年大きな注目を集めている。
アスペクトベースの感情分析の重要な構成要素はアスペクト抽出である。
効果的なアスペクト抽出は、アスペクトレベルでの正確な感情分析の基礎となる。
本稿では,単語とパート・オブ・音声のタグに異なる種類の埋め込みを使用し,複数の学習モデルを組み合わせたアスペクト抽出モデルを提案する。
また、文のアスペクト位置をよりよく捉えるために、依存性解析出力に基づく木の位置符号化を提案する。
さらに、英語データセットを制御された環境で機械翻訳することで、トルコ語のための新しいアスペクト抽出データセットを構築する。
トルコの2つのデータセットで実施された実験により、提案されたモデルは、同じデータセットを使用する研究よりも優れており、木の位置エンコーディングを組み込むことで、モデルの性能が向上することが示された。
関連論文リスト
- Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet extract (EASTE)は、Aspect-Based Sentiment Analysisタスクである。
本研究は,EASTEタスクにおける高性能化を目標とし,モデルサイズ,タイプ,適応技術がタスクパフォーマンスに与える影響について検討する。
最終的には、複雑な感情分析における詳細な洞察と最先端の成果を提供する。
論文 参考訳(メタデータ) (2024-07-04T16:48:14Z) - A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning [3.30307212568497]
本稿では,移動学習を用いたアスペクトベース感性分析のためのハイブリッド手法を提案する。
このアプローチは、大きな言語モデル(LLM)と従来の構文的依存関係の両方の長所を利用して、弱い教師付きアノテーションを生成することに焦点を当てている。
論文 参考訳(メタデータ) (2024-03-25T23:02:33Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - ImPaKT: A Dataset for Open-Schema Knowledge Base Construction [10.073210304061966]
ImPaKTは、ショッピングドメイン(商品購入ガイド)におけるC4コーパスから約2500のテキストスニペットからなるオープンスキーマ情報抽出用データセットである。
本研究では,オープンソースUL2言語モデルをデータセットのサブセットに微調整し,製品購入ガイドのコーパスから含意関係を抽出し,その結果の予測を人為的に評価することで,このアプローチの能力を評価する。
論文 参考訳(メタデータ) (2022-12-21T05:02:49Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - WikiAsp: A Dataset for Multi-domain Aspect-based Summarization [69.13865812754058]
マルチドメインアスペクトベースの要約のための大規模データセットであるWikiAspを提案する。
具体的には、アスペクトアノテーションのプロキシとして、各記事のセクションタイトルとバウンダリを使用して、20の異なるドメインからウィキペディア記事を使用してデータセットを構築します。
その結果,既存の要約モデルがこの設定で直面する重要な課題,例えば引用されたソースの適切な代名詞処理,時間に敏感なイベントの一貫した説明などが浮き彫りになった。
論文 参考訳(メタデータ) (2020-11-16T10:02:52Z) - Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional
Networks and Syntax-based Regulation [89.38054401427173]
Aspect-based Sentiment Analysis (ABSA) は、特定の側面に向けて文の感情極性を予測する。
依存関係ツリーは、ABSAの最先端のパフォーマンスを生成するために、ディープラーニングモデルに統合することができる。
本稿では,この2つの課題を克服するために,グラフに基づく新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2020-10-26T07:36:24Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。