論文の概要: Olympus: A Jumping Quadruped for Planetary Exploration Utilizing Reinforcement Learning for In-Flight Attitude Control
- arxiv url: http://arxiv.org/abs/2503.03574v1
- Date: Wed, 05 Mar 2025 15:01:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 17:18:41.111576
- Title: Olympus: A Jumping Quadruped for Planetary Exploration Utilizing Reinforcement Learning for In-Flight Attitude Control
- Title(参考訳): Olympus: 飛行中の姿勢制御のための強化学習を活用した惑星探査用ジャンプクアドル
- Authors: Jørgen Anker Olsen, Grzegorz Malczyk, Kostas Alexis,
- Abstract要約: 本稿では,火星の重力に合わせた跳躍脚ロボットOlympusの設計,シミュレーション,学習に基づく姿勢制御について述べる。
- 参考スコア(独自算出の注目度): 9.771798181062822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring planetary bodies with lower gravity, such as the moon and Mars, allows legged robots to utilize jumping as an efficient form of locomotion thus giving them a valuable advantage over traditional rovers for exploration. Motivated by this fact, this paper presents the design, simulation, and learning-based "in-flight" attitude control of Olympus, a jumping legged robot tailored to the gravity of Mars. First, the design requirements are outlined followed by detailing how simulation enabled optimizing the robot's design - from its legs to the overall configuration - towards high vertical jumping, forward jumping distance, and in-flight attitude reorientation. Subsequently, the reinforcement learning policy used to track desired in-flight attitude maneuvers is presented. Successfully crossing the sim2real gap, extensive experimental studies of attitude reorientation tests are demonstrated.
- Abstract(参考訳): 月や火星のような低重力の惑星体を探索することで、脚のついたロボットは、ジャンプを移動の効率的な形態として活用することができる。
そこで本研究では,火星の重力に合わせた跳躍脚ロボットOlympusの設計,シミュレーション,学習に基づく姿勢制御について述べる。
まず、ロボットの設計を脚から全体の構成へと最適化し、高い垂直ジャンプ、前方ジャンプ距離、飛行中の姿勢調整を最適化する方法を詳述した上で、設計要件を概説する。
その後、所望の飛行中の姿勢操作を追跡するための強化学習方針を示す。
sim2realのギャップを横切ることに成功し、姿勢調整試験の広範な実験的研究が実証された。
関連論文リスト
- PALo: Learning Posture-Aware Locomotion for Quadruped Robots [29.582249837902427]
本稿では,姿勢認識型移動ロボットPALoのエンド・ツー・エンド深部強化学習フレームワークを提案する。
PALoは、直線速度と角速度の同時追跡と、体高、ピッチ、ロール角度のリアルタイム調整を行う。
PALoは、シミュレートされた環境でアジャイルな姿勢認識ロコモーションコントロールを実現し、微調整なしで実世界の設定に転送することに成功した。
論文 参考訳(メタデータ) (2025-03-06T14:13:59Z) - Humanoid Whole-Body Locomotion on Narrow Terrain via Dynamic Balance and Reinforcement Learning [54.26816599309778]
動的バランスと強化学習(RL)に基づく新しい全身移動アルゴリズムを提案する。
具体的には,ZMP(Zero-Moment Point)駆動の報酬とタスク駆動の報酬を,全身のアクター批判的枠組みで拡張した尺度を活用することで,動的バランス機構を導入する。
フルサイズのUnitree H1-2ロボットによる実験により、非常に狭い地形でのバランスを維持するための手法の有効性が検証された。
論文 参考訳(メタデータ) (2025-02-24T14:53:45Z) - BeamDojo: Learning Agile Humanoid Locomotion on Sparse Footholds [35.62230804783507]
疎い足場におけるヒューマノイド移動のための強化学習フレームワーク、BeamDojoを紹介した。
BeamDojoは、密集した移動報酬と疎い足場報酬の学習プロセスのバランスをとる。
実世界の展開を実現するために,LiDARを用いた標高マップを実装した。
論文 参考訳(メタデータ) (2025-02-14T18:42:42Z) - Learning Humanoid Standing-up Control across Diverse Postures [27.79222176982376]
立ち上がり制御はヒューマノイドロボットにとって不可欠であり、現在の移動と移動操作システムに統合される可能性がある。
本稿では,立ち上がり制御をゼロから学習する強化学習フレームワークであるHoST(Humanoid Standing-up Control)を提案する。
実験結果から, 各種実験室および屋外環境におけるスムーズ, 安定, 頑健な立位運動が得られた。
論文 参考訳(メタデータ) (2025-02-12T13:10:09Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Learning Humanoid Locomotion over Challenging Terrain [84.35038297708485]
本研究では,自然と人為的な地形を横断する視覚障害者の移動に対する学習に基づくアプローチを提案する。
本モデルではまず, 時系列モデルを用いた平地軌道のデータセット上で事前学習を行い, 補強学習を用いて不均一な地形を微調整する。
本研究では, 荒面, 変形面, 傾斜面など, 様々な地形にまたがる実際のヒューマノイドロボットを用いて, モデルを評価する。
論文 参考訳(メタデータ) (2024-10-04T17:57:09Z) - Learning to enhance multi-legged robot on rugged landscapes [7.956679144631909]
多足ロボットは、頑丈な風景をナビゲートするための有望なソリューションを提供する。
近年の研究では、線形制御器が挑戦的な地形上で信頼性の高い移動性を確保することが示されている。
我々は,このロボットプラットフォームに適した MuJoCo ベースのシミュレータを開発し,シミュレーションを用いて強化学習に基づく制御フレームワークを開発する。
論文 参考訳(メタデータ) (2024-09-14T15:53:08Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
この研究は、トルク制御された二足歩行ロボットが実世界で頑丈で多目的なダイナミックジャンプを行えるようにすることで、二足歩行ロボットの機敏さの限界を推し進めることを目的としている。
本稿では,ロボットが様々な場所や方向へジャンプするなど,さまざまなジャンプタスクを達成するための強化学習フレームワークを提案する。
我々は,ロボットの長期入出力(I/O)履歴を符号化し,短期I/O履歴への直接アクセスを可能にする新しいポリシー構造を開発する。
論文 参考訳(メタデータ) (2023-02-19T01:06:09Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
高速で頑健な逆着陸は、特に機内でのセンシングと計算に完全に依存しながらも、空中ロボットにとって難しい偉業である。
これまでの研究では、一連の視覚的手がかりとキネマティックな動作の間に直接的な因果関係が特定され、小型の空中ロボットでこの困難なエアロバティックな操作を確実に実行することができた。
本研究では、まずDeep Reinforcement Learningと物理シミュレーションを用いて、頑健な逆着陸のための汎用的最適制御ポリシーを得る。
論文 参考訳(メタデータ) (2022-09-22T14:38:10Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。