論文の概要: Learning to enhance multi-legged robot on rugged landscapes
- arxiv url: http://arxiv.org/abs/2409.09473v1
- Date: Sat, 14 Sep 2024 15:53:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 20:37:27.364560
- Title: Learning to enhance multi-legged robot on rugged landscapes
- Title(参考訳): 沼地における多足ロボットの学習
- Authors: Juntao He, Baxi Chong, Zhaochen Xu, Sehoon Ha, Daniel I. Goldman,
- Abstract要約: 多足ロボットは、頑丈な風景をナビゲートするための有望なソリューションを提供する。
近年の研究では、線形制御器が挑戦的な地形上で信頼性の高い移動性を確保することが示されている。
我々は,このロボットプラットフォームに適した MuJoCo ベースのシミュレータを開発し,シミュレーションを用いて強化学習に基づく制御フレームワークを開発する。
- 参考スコア(独自算出の注目度): 7.956679144631909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Navigating rugged landscapes poses significant challenges for legged locomotion. Multi-legged robots (those with 6 and greater) offer a promising solution for such terrains, largely due to their inherent high static stability, resulting from a low center of mass and wide base of support. Such systems require minimal effort to maintain balance. Recent studies have shown that a linear controller, which modulates the vertical body undulation of a multi-legged robot in response to shifts in terrain roughness, can ensure reliable mobility on challenging terrains. However, the potential of a learning-based control framework that adjusts multiple parameters to address terrain heterogeneity remains underexplored. We posit that the development of an experimentally validated physics-based simulator for this robot can rapidly advance capabilities by allowing wide parameter space exploration. Here we develop a MuJoCo-based simulator tailored to this robotic platform and use the simulation to develop a reinforcement learning-based control framework that dynamically adjusts horizontal and vertical body undulation, and limb stepping in real-time. Our approach improves robot performance in simulation, laboratory experiments, and outdoor tests. Notably, our real-world experiments reveal that the learning-based controller achieves a 30\% to 50\% increase in speed compared to a linear controller, which only modulates vertical body waves. We hypothesize that the superior performance of the learning-based controller arises from its ability to adjust multiple parameters simultaneously, including limb stepping, horizontal body wave, and vertical body wave.
- Abstract(参考訳): 荒れ果てた風景を航行することは足の移動に重大な困難をもたらす。
マルチ脚ロボット(これらは6つ以上のもの)は、そのような地形に対して有望なソリューションを提供する。
このようなシステムはバランスを維持するために最小限の努力を必要とする。
近年の研究では、地形の荒さの変化に応答して多脚ロボットの垂直体屈を調節するリニアコントローラが、挑戦的な地形上での確実な移動性を確保することが示されている。
しかし、地形の不均一性に対応するために複数のパラメータを調整した学習ベースの制御フレームワークの可能性については、未検討のままである。
実験により検証された物理学に基づくロボットシミュレータの開発は,広いパラメータ空間探索を可能とすることで,急速に機能向上できると仮定する。
そこで我々は,このロボットプラットフォームに合わせたMuJoCoベースのシミュレータを開発し,そのシミュレーションを用いて,水平および垂直の身体のゆがみを動的に調整する強化学習に基づく制御フレームワークを開発し,手足の踏み込みをリアルタイムで行う。
本手法は,シミュレーション,実験室実験,屋外試験におけるロボットの性能を向上させる。
特に実世界の実験では,垂直波のみを変調する線形制御器に比べて,学習ベース制御器の速度が30~50倍に向上していることが判明した。
学習ベースコントローラの優れた性能は、手足踏み、水平体波、垂直体波を含む複数のパラメータを同時に調整できることから生じると仮定する。
関連論文リスト
- Learning a Terrain- and Robot-Aware Dynamics Model for Autonomous Mobile Robot Navigation [8.261491880782769]
本稿では,確率的,地形的,ロボット対応のフォワードダイナミクスモデル(TRADYN)を学習するための新しいアプローチを提案する。
本研究では, 空間的に異なる摩擦係数を持つ地形特性を持つ一サイクル動的ロボットの2次元ナビゲーションシミュレーションにおいて, 提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-09-17T16:46:39Z) - Agile and versatile bipedal robot tracking control through reinforcement learning [12.831810518025309]
本稿では,二足歩行ロボットのための多目的コントローラを提案する。
足首と身体の軌跡を、単一の小さなニューラルネットワークを用いて広範囲の歩行で追跡する。
最小限の制御ユニットと高レベルなポリシーを組み合わせることで、高いフレキシブルな歩行制御を実現することができる。
論文 参考訳(メタデータ) (2024-04-12T05:25:03Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
高速で頑健な逆着陸は、特に機内でのセンシングと計算に完全に依存しながらも、空中ロボットにとって難しい偉業である。
これまでの研究では、一連の視覚的手がかりとキネマティックな動作の間に直接的な因果関係が特定され、小型の空中ロボットでこの困難なエアロバティックな操作を確実に実行することができた。
本研究では、まずDeep Reinforcement Learningと物理シミュレーションを用いて、頑健な逆着陸のための汎用的最適制御ポリシーを得る。
論文 参考訳(メタデータ) (2022-09-22T14:38:10Z) - Learning a Single Near-hover Position Controller for Vastly Different
Quadcopters [56.37274861303324]
本稿では,クワッドコプターのための適応型ニアホバー位置制御器を提案する。
これは、非常に異なる質量、大きさ、運動定数を持つクワッドコプターに展開することができる。
また、実行中に未知の障害に迅速に適応する。
論文 参考訳(メタデータ) (2022-09-19T17:55:05Z) - Bayesian Optimization Meets Hybrid Zero Dynamics: Safe Parameter
Learning for Bipedal Locomotion Control [17.37169551675587]
両足歩行ロボットの移動制御のためのマルチドメイン制御パラメータ学習フレームワークを提案する。
BOを利用して、HZDベースのコントローラで使用される制御パラメータを学習する。
次に、物理ロボットに学習プロセスを適用し、シミュレーションで学習した制御パラメータの修正を学習する。
論文 参考訳(メタデータ) (2022-03-04T20:48:17Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。