Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs
- URL: http://arxiv.org/abs/2503.03594v2
- Date: Sun, 09 Mar 2025 10:56:53 GMT
- Title: Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs
- Authors: Haoran Fan, Bin Li, Yixuan Weng, Shoujun Zhou,
- Abstract summary: We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting.<n>Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters.
- Score: 11.1036247482657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.
Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.
We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
Large Language Models (LLMs) have been extensively applied in time series analysis.
Yet, their utility in the few-shot classification (i.e., a crucial training scenario) is underexplored.
We aim to leverage the extensive pre-trained knowledge in LLMs to overcome the data scarcity problem.
arXiv Detail & Related papers (2025-01-30T03:59:59Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Adversarial Vulnerabilities in Large Language Models for Time Series Forecasting [14.579802892916101]
Large Language Models (LLMs) have recently demonstrated significant potential in time series forecasting.
However, their robustness and reliability in real-world applications remain under-explored.
We introduce a targeted adversarial attack framework for LLM-based time series forecasting.
arXiv Detail & Related papers (2024-12-11T04:53:15Z) - TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models [14.880203496664963]
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification.<n>LLMs directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs.<n>We propose TableTime, which reformulates MTSC as a table understanding task.
arXiv Detail & Related papers (2024-11-24T07:02:32Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.<n>We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.<n>Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
We conduct a comprehensive evaluation of Large Language Models (LLMs) for temporal event forecasting.
We find that directly integrating raw texts into the input of LLMs does not enhance zero-shot extrapolation performance.
In contrast, incorporating raw texts in specific complex events and fine-tuning LLMs significantly improves performance.
arXiv Detail & Related papers (2024-07-16T11:58:54Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
We propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF.
To reduce the distribution discrepancy, we develop the cross-modal match module.
CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-03-12T04:04:38Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters [11.796765525301051]
We propose a framework for time-series forecasting with pre-trained Large Language Models (LLMs)<n>LLM4TS consists of a two-stage fine-tuning strategy to align LLMs with the nuances of time-series data, and the forecasting fine-tuning stage for downstream time-series forecasting tasks.<n>Our framework features a novel two-level aggregation method that integrates multi-scale temporal data within pre-trained LLMs, enhancing their ability to interpret time-specific information.
arXiv Detail & Related papers (2023-08-16T16:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.