Conformal prediction of future insurance claims in the regression problem
- URL: http://arxiv.org/abs/2503.03659v2
- Date: Thu, 24 Apr 2025 16:16:24 GMT
- Title: Conformal prediction of future insurance claims in the regression problem
- Authors: Liang Hong,
- Abstract summary: This article introduces conformal prediction -- a general machine learning strategy for valid predictions.<n>The proposed method is both model-free and tuning- parameter-free.<n>It also guarantees finite-sample validity at a pre-assigned coverage probability level.
- Score: 1.7223564681760168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the current insurance literature, prediction of insurance claims in the regression problem is often performed with a statistical model. This model-based approach may potentially suffer from several drawbacks: (i) model misspecification, (ii) selection effect, and (iii) lack of finite-sample validity. This article addresses these three issues simultaneously by employing conformal prediction -- a general machine learning strategy for valid predictions. The proposed method is both model-free and tuning-parameter-free. It also guarantees finite-sample validity at a pre-assigned coverage probability level. Examples, based on both simulated and real data, are provided to demonstrate the excellent performance of the proposed method and its applications in insurance, especially regarding meeting the solvency capital requirement of European insurance regulation, Solvency II.
Related papers
- Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.
We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - Progression: an extrapolation principle for regression [0.0]
We propose a novel statistical extrapolation principle.
It assumes a simple relationship between predictors and the response at the boundary of the training predictor samples.
Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range.
arXiv Detail & Related papers (2024-10-30T17:29:51Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.<n>We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.<n>This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Mitigating optimistic bias in entropic risk estimation and optimization with an application to insurance [5.407319151576265]
The entropic risk measure is widely used to account for tail risks associated with an uncertain loss.
To mitigate the bias in the empirical entropic risk estimator, we propose a strongly consistent bootstrapping procedure.
We show that our methods suggest a higher (and more accurate) premium to homeowners.
arXiv Detail & Related papers (2024-09-30T04:02:52Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Conformalized Selective Regression [2.3964255330849356]
We propose a novel approach to selective regression by leveraging conformal prediction.
We show how our proposed approach, conformalized selective regression, demonstrates an advantage over multiple state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-26T04:43:50Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Performative Prediction with Bandit Feedback: Learning through Reparameterization [23.039885534575966]
performative prediction is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model.
We develop a reparametization that reparametrizes the performative prediction objective as a function of induced data distribution.
arXiv Detail & Related papers (2023-05-01T21:31:29Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
Conformal off-policy prediction can output reliable predictive intervals for the outcome under a new target policy.
We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup.
arXiv Detail & Related papers (2022-06-09T10:39:33Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.