Mitigating optimistic bias in entropic risk estimation and optimization with an application to insurance
- URL: http://arxiv.org/abs/2409.19926v3
- Date: Wed, 25 Dec 2024 12:45:46 GMT
- Title: Mitigating optimistic bias in entropic risk estimation and optimization with an application to insurance
- Authors: Utsav Sadana, Erick Delage, Angelos Georghiou,
- Abstract summary: The entropic risk measure is widely used to account for tail risks associated with an uncertain loss.
To mitigate the bias in the empirical entropic risk estimator, we propose a strongly consistent bootstrapping procedure.
We show that our methods suggest a higher (and more accurate) premium to homeowners.
- Score: 5.407319151576265
- License:
- Abstract: The entropic risk measure is widely used in high-stakes decision making to account for tail risks associated with an uncertain loss. With limited data, the empirical entropic risk estimator, i.e. replacing the expectation in the entropic risk measure with a sample average, underestimates the true risk. To mitigate the bias in the empirical entropic risk estimator, we propose a strongly asymptotically consistent bootstrapping procedure. The first step of the procedure involves fitting a distribution to the data, whereas the second step estimates the bias of the empirical entropic risk estimator using bootstrapping, and corrects for it. Two methods are proposed to fit a Gaussian Mixture Model to the data, a computationally intensive one that fits the distribution of empirical entropic risk, and a simpler one with a component that fits the tail of the empirical distribution. As an application of our approach, we study distributionally robust entropic risk minimization problems with type-$\infty$ Wasserstein ambiguity set and apply our bias correction to debias validation performance. Furthermore, we propose a distributionally robust optimization model for an insurance contract design problem that takes into account the correlations of losses across households. We show that choosing regularization parameters based on the cross validation methods can result in significantly higher out-of-sample risk for the insurer if the bias in validation performance is not corrected for. This improvement in performance can be explained from the observation that our methods suggest a higher (and more accurate) premium to homeowners.
Related papers
- Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
arXiv Detail & Related papers (2024-03-28T17:28:06Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Pitfall of Optimism: Distributional Reinforcement Learning by
Randomizing Risk Criterion [9.35556128467037]
We present a novel distributional reinforcement learning algorithm that selects actions by randomizing risk criterion to avoid one-sided tendency on risk.
Our theoretical results support that the proposed method does not fall into biased exploration and is guaranteed to converge to an optimal return.
arXiv Detail & Related papers (2023-10-25T10:53:04Z) - Empirical Risk Minimization for Losses without Variance [26.30435936379624]
This paper considers an empirical risk problem under heavy-tailed settings, where data does not have finite variance, but only has $p$-th moment with $p in (1,2)$.
Instead of using estimation procedure based on truncated observed data, we choose the minimization by minimizing the risk value.
Those risk values can be robustly estimated via using the remarkable Catoni's method (Catoni, 2012).
arXiv Detail & Related papers (2023-09-07T16:14:00Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
A common approach is designing a data-driven surrogate penalty to capture generalization and minimize the empirical risk jointly with the penalty.
We argue that a significant failure mode of this recipe is an excess risk due to an erroneous penalty or hardness in joint optimization.
We present an approach that eliminates this problem. Instead of jointly minimizing empirical risk with the penalty, we minimize the penalty under the constraint of optimality of the empirical risk.
arXiv Detail & Related papers (2023-08-30T08:46:46Z) - A Risk-Sensitive Approach to Policy Optimization [21.684251937825234]
Standard deep reinforcement learning (DRL) aims to maximize expected reward, considering collected experiences equally in formulating a policy.
We propose a more direct approach whereby risk-sensitive objectives, specified in terms of the cumulative distribution function (CDF) of the distribution of full-episode rewards, are optimized.
We demonstrate that the use of moderately "pessimistic" risk profiles, which emphasize scenarios where the agent performs poorly, leads to enhanced exploration and a continual focus on addressing deficiencies.
arXiv Detail & Related papers (2022-08-19T00:55:05Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
We develop a general framework for risk monotonization based on cross-validation.
We propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and boosting.
arXiv Detail & Related papers (2022-05-25T17:41:40Z) - Holdouts set for safe predictive model updating [0.4499833362998489]
We propose using a holdout set' - a subset of the population that does not receive interventions guided by the risk score.
We show that, in order to minimise the number of pre-eclampsia cases over time, this is best achieved using a holdout set of around 10,000 individuals.
arXiv Detail & Related papers (2022-02-13T18:04:00Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.