論文の概要: Attentive Reasoning Queries: A Systematic Method for Optimizing Instruction-Following in Large Language Models
- arxiv url: http://arxiv.org/abs/2503.03669v1
- Date: Wed, 05 Mar 2025 17:03:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:53:36.063715
- Title: Attentive Reasoning Queries: A Systematic Method for Optimizing Instruction-Following in Large Language Models
- Title(参考訳): 注意的推論クエリ:大規模言語モデルにおける命令追従の最適化のための体系的手法
- Authors: Bar Karov, Dor Zohar, Yam Marcovitz,
- Abstract要約: 本稿では,新しい構造化推論手法であるAttentive Reasoning Queries (ARQs)を提案する。
ARQは、ドメイン特化推論ブループリントを通じて、大規模言語モデルにおける命令追跡を大幅に改善する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present Attentive Reasoning Queries (ARQs), a novel structured reasoning approach that significantly improves instruction-following in Large Language Models through domain-specialized reasoning blueprints. While LLMs demonstrate remarkable capabilities across diverse tasks, they often fail to maintain adherence to complex, use-case-specific instructions during multi-turn conversations, presenting challenges for business-critical applications. ARQs address this limitation by guiding LLMs through systematic reasoning steps with targeted queries that reinstate critical instructions and facilitate intermediate reasoning throughout the completion process. In extensive testing within Parlant, our framework for reliable customer-facing agents in which ARQs were born out of necessity, they achieved a 90.2% success rate across 87 test scenarios, outperforming both Chain-of-Thought reasoning (86.1%) and direct response generation (81.5%). ARQs showed particular strength in addressing persistent failure modes like guideline re-application and hallucination prevention. Our analysis also revealed that ARQs can potentially be more computationally efficient than free-form reasoning when carefully designed. These findings demonstrate that structured reasoning approaches provide effective mechanisms for controlling how LLMs process information and make decisions in complex scenarios.
- Abstract(参考訳): 本稿では,大規模言語モデルにおける命令追従を大幅に改善する新しい構造的推論手法であるAttentive Reasoning Queries (ARQs)を提案する。
LLMは様々なタスクにまたがる顕著な能力を示すが、ビジネスクリティカルなアプリケーションの課題を示すマルチターン会話において、複雑なユースケース固有の命令の順守に失敗することが多い。
ARQは、クリティカル命令を再記述し、完了プロセス全体を通して中間推論を容易にするターゲットクエリによる体系的な推論ステップを通じてLLMを導くことで、この制限に対処する。
当社のARQが不要から生まれた信頼性の高い顧客対応エージェントフレームワークであるParlantでの広範なテストでは、87のテストシナリオで90.2%の成功率を獲得し、Chain-of-Thought推論(86.1%)とダイレクトレスポンス生成(81.5%)を上回りました。
ARQは、ガイドラインの再適用や幻覚予防といった永続的な障害モードに対処する上で、特に強みを示した。
分析の結果,注意深い設計では,ARQは自由形式推論よりも計算効率が高い可能性が示唆された。
これらの結果から,構造化推論手法は,LLMが複雑なシナリオにおいてどのように情報処理を行い,意思決定を行うかを制御するための効果的なメカニズムを提供することが示された。
関連論文リスト
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
本稿では,大規模言語モデル(LLM)推論を強化するために,DID法を提案する。
DIDはリトルストーン次元と情報エントロピーを組み合わせた2次元複雑度評価システムを実装している。
その結果,推理精度と解の精度は有意に向上した。
論文 参考訳(メタデータ) (2024-10-03T18:30:47Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Leveraging LLM Reasoning Enhances Personalized Recommender Systems [25.765908301183188]
本稿では,レコメンデーションシステム (RecSys) におけるLarge Language Models (LLMs) の推論の適用が,大きな課題であることを示す。
本研究では、RecSysの推論をよりよく理解し、タスク品質がどのように改善されるかを示すために、いくつかの側面について検討する。
論文 参考訳(メタデータ) (2024-07-22T20:18:50Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。