論文の概要: MAS-GPT: Training LLMs to Build LLM-based Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2503.03686v1
- Date: Wed, 05 Mar 2025 17:27:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:43.131758
- Title: MAS-GPT: Training LLMs to Build LLM-based Multi-Agent Systems
- Title(参考訳): MAS-GPT:LLMによるマルチエージェントシステム構築のためのLLMの訓練
- Authors: Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, Jing Shao,
- Abstract要約: 我々は、MASを生成言語タスクとして再定義することで、MASを構築するプロセスを簡単にする。
一貫性のあるクエリ-MASペアからなる高品質なデータセットを作成する。
生成されたMASは、ユーザクエリをシームレスに処理し、高品質なレスポンスを提供する。
- 参考スコア(独自算出の注目度): 43.41902313944615
- License:
- Abstract: LLM-based multi-agent systems (MAS) have shown significant potential in tackling diverse tasks. However, to design effective MAS, existing approaches heavily rely on manual configurations or multiple calls of advanced LLMs, resulting in inadaptability and high inference costs. In this paper, we simplify the process of building an MAS by reframing it as a generative language task, where the input is a user query and the output is a corresponding MAS. To address this novel task, we unify the representation of MAS as executable code and propose a consistency-oriented data construction pipeline to create a high-quality dataset comprising coherent and consistent query-MAS pairs. Using this dataset, we train MAS-GPT, an open-source medium-sized LLM that is capable of generating query-adaptive MAS within a single LLM inference. The generated MAS can be seamlessly applied to process user queries and deliver high-quality responses. Extensive experiments on 9 benchmarks and 5 LLMs show that the proposed MAS-GPT consistently outperforms 10+ baseline MAS methods on diverse settings, indicating MAS-GPT's high effectiveness, efficiency and strong generalization ability. Code will be available at https://github.com/rui-ye/MAS-GPT.
- Abstract(参考訳): LLMベースのマルチエージェントシステム(MAS)は多様なタスクに取り組む上で大きな可能性を示している。
しかし、MASを効果的に設計するためには、既存のアプローチは手動構成や高度なLCMの複数の呼び出しに大きく依存しており、不適応性と高い推論コストをもたらす。
本稿では、入力がユーザクエリであり、出力が対応するMASである生成言語タスクとして再フレーミングすることで、MASを構築するプロセスを簡単にする。
この課題に対処するため,MASの表現を実行可能なコードとして統一し,一貫性を重視したデータ構築パイプラインを提案し,一貫性と一貫性のあるクエリ-MASペアからなる高品質なデータセットを作成する。
このデータセットを用いて、単一のLLM推論内でクエリ適応MASを生成することができるオープンソースの中規模LCMであるMAS-GPTを訓練する。
生成されたMASは、ユーザクエリをシームレスに処理し、高品質なレスポンスを提供する。
9つのベンチマークと5つのLLMの大規模な実験により、提案されたMAS-GPTは、多種多様な設定で10以上のベースラインMAS法を一貫して上回り、MAS-GPTの高い有効性、効率、強力な一般化能力を示している。
コードはhttps://github.com/rui-ye/MAS-GPTで入手できる。
関連論文リスト
- Dynamic Ensemble Reasoning for LLM Experts [35.774197263383996]
本研究では,動的入力を前提とした複数のLLMエキスパートの強みを統合するために,DERと呼ばれる動的アンサンブル推論パラダイムを提案する。
提案手法では,最先端のベースラインに比べて計算資源が少ないため,性能が向上する。
論文 参考訳(メタデータ) (2024-12-10T12:05:56Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization [19.200989737492595]
大規模言語モデル(LLM)は、ユーザの質問に答える上で大きな進歩を見せている。
LLMの出力の品質はプロンプト設計に大きく依存しており、優れたプロンプトによってLLMが非常に難しい問題に正しく答えられる可能性がある。
LLMの階層構造を提案し、まず、正確な指示と正確な単語を階層的に生成し、次に、このプロンプトを用いてユーザクエリの最終回答を生成する。
論文 参考訳(メタデータ) (2024-05-30T17:05:45Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。