論文の概要: BotUmc: An Uncertainty-Aware Twitter Bot Detection with Multi-view Causal Inference
- arxiv url: http://arxiv.org/abs/2503.03775v1
- Date: Tue, 04 Mar 2025 13:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:58:41.637072
- Title: BotUmc: An Uncertainty-Aware Twitter Bot Detection with Multi-view Causal Inference
- Title(参考訳): BotUmc:マルチビュー因果推論による不確実なTwitterボット検出
- Authors: Tao Yang, Yang Hu, Feihong Lu, Ziwei Zhang, Qingyun Sun, Jianxin Li,
- Abstract要約: 本研究では、不確実性を考慮したボット検出手法を提案し、不確実性スコアを用いて、異なる環境下でのソーシャルネットワークの複数ビューからの高信頼度判定を行う。
具体的には,提案するBotUmc は LLM を用いてつぶやきからの情報を抽出し,抽出した情報,元のユーザ情報,ユーザ関係に基づいてグラフを構築し,因果的干渉による複数のビューを生成する。最後に,不確実性損失を用いて結果の不確実性を定量化し,結果の選択を最終決定とする。
- 参考スコア(独自算出の注目度): 30.448232690207387
- License:
- Abstract: Social bots have become widely known by users of social platforms. To prevent social bots from spreading harmful speech, many novel bot detections are proposed. However, with the evolution of social bots, detection methods struggle to give high-confidence answers for samples. This motivates us to quantify the uncertainty of the outputs, informing the confidence of the results. Therefore, we propose an uncertainty-aware bot detection method to inform the confidence and use the uncertainty score to pick a high-confidence decision from multiple views of a social network under different environments. Specifically, our proposed BotUmc uses LLM to extract information from tweets. Then, we construct a graph based on the extracted information, the original user information, and the user relationship and generate multiple views of the graph by causal interference. Lastly, an uncertainty loss is used to force the model to quantify the uncertainty of results and select the result with low uncertainty in one view as the final decision. Extensive experiments show the superiority of our method.
- Abstract(参考訳): ソーシャルボットは、ソーシャルプラットフォームのユーザーによって広く知られるようになった。
社会的ボットが有害な言論を広めるのを防ぐために、多くの新しいボット検出法が提案されている。
しかし、ソーシャルボットの進化に伴い、検出手法はサンプルに対する高信頼の回答を与えるのに苦労する。
これにより、出力の不確実性を定量化し、結果の信頼性を知らせるモチベーションが得られます。
そこで本研究では,不確実性を考慮したボット検出手法を提案し,不確実性スコアを用いて,異なる環境下でのソーシャルネットワークの複数ビューからの高信頼度判定を行う。
特に,提案するBotUmcでは,ツイートから情報を抽出するためにLLMを使用している。
そして,抽出した情報,元のユーザ情報,ユーザ関係に基づいてグラフを構築し,因果干渉により複数のビューを生成する。
最後に、不確実性損失を用いて結果の不確かさを定量化し、結果が最終決定として低い不確実性で選択される。
大規模な実験により,本手法の優位性を示した。
関連論文リスト
- Entendre, a Social Bot Detection Tool for Niche, Fringe, and Extreme Social Media [1.4913052010438639]
オープンアクセス、スケーラブル、プラットフォームに依存しないボット検出フレームワークであるEntendreを紹介した。
われわれは、ほとんどのソーシャルプラットフォームが一般的なテンプレートを共有しており、ユーザーはコンテンツを投稿し、コンテンツを承認し、バイオを提供することができるという考えを生かしている。
Entendreの有効性を示すために、私たちは、現在定義されている右翼プラットフォームであるParlerに人種差別的コンテンツを投稿するアカウントの中で、ボットの存在を調査するために使用しました。
論文 参考訳(メタデータ) (2024-08-13T13:50:49Z) - Unmasking Social Bots: How Confident Are We? [41.94295877935867]
本稿では,ボット検出と不確実性の定量化の両方に対処することを提案する。
この二重焦点は、各予測の定量化の不確実性に関連する追加情報を活用することができるため、非常に重要である。
具体的には,予測を高い信頼性で行う場合のボットに対する標的的介入を促進するとともに,予測が不確実な場合の警告(例えば,より多くのデータ収集)を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:33:52Z) - SeBot: Structural Entropy Guided Multi-View Contrastive Learning for Social Bot Detection [34.68635583099056]
マルチビューグラフに基づくコントラスト学習型ソーシャルボット検出器SEBotを提案する。
特に、構造エントロピーを不確実性計量として使用して、グラフ全体の構造を最適化する。
そして、ホモフィリーな仮定を超えたメッセージパッシングを可能にするエンコーダを設計する。
論文 参考訳(メタデータ) (2024-05-18T08:16:11Z) - Adversarial Botometer: Adversarial Analysis for Social Bot Detection [1.9280536006736573]
ソーシャルボットは人間の創造性を模倣するコンテンツを制作する。
悪意のあるソーシャルボットは、非現実的なコンテンツで人々を騙すようになる。
テキストベースのボット検出器の動作を競合環境下で評価する。
論文 参考訳(メタデータ) (2024-05-03T11:28:21Z) - My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T03:09:48Z) - From Online Behaviours to Images: A Novel Approach to Social Bot
Detection [0.3867363075280544]
特定のタイプの社会アカウントは、要求できないコンテンツ、過党派、宣伝的な情報を促進することが知られている。
まず、アカウントが実行するアクションのシーケンスを画像に変換する新しいアルゴリズムを提案する。
文献でよく知られた実際のアカウント/ボットアカウントデータセット上でのボット検出の最先端結果と比較する。
論文 参考訳(メタデータ) (2023-04-15T11:36:50Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
汎用的でデプロイが容易なサンプリング不要のアプローチを導入します。
我々は,最先端手法と同等の信頼性のある不確実性推定を,計算コストを著しく低減した形で生成する。
論文 参考訳(メタデータ) (2022-11-21T13:23:09Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
悪意ある俳優は、社会ボットとして知られるアルゴリズムによって部分的に制御される不正なソーシャルメディアアカウントを作成し、誤情報を広め、オンラインでの議論を扇動する。
異なるタイプのボットが、異なる行動特徴によって特徴づけられることを示す。
本稿では,ボットのクラスごとに専門的な分類器を訓練し,それらの決定を最大ルールで組み合わせる,教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T22:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。