Accelerating Focal Search in Multi-Agent Path Finding with Tighter Lower Bounds
- URL: http://arxiv.org/abs/2503.03779v1
- Date: Tue, 04 Mar 2025 20:39:00 GMT
- Title: Accelerating Focal Search in Multi-Agent Path Finding with Tighter Lower Bounds
- Authors: Yimin Tang, Zhenghong Yu, Jiaoyang Li, Sven Koenig,
- Abstract summary: Multi-Agent Path Finding (MAPF) involves finding collision-free paths for multiple agents while minimizing a cost function--an NP-hard problem.<n>We propose a novel bounded suboptimal algorithm, double-ECBS (DECBS), to address this issue by first determining the maximum LB value and then employing a best-first search guided by this LB to find a collision-free path.
- Score: 18.390974792959685
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Multi-Agent Path Finding (MAPF) involves finding collision-free paths for multiple agents while minimizing a cost function--an NP-hard problem. Bounded suboptimal methods like Enhanced Conflict-Based Search (ECBS) and Explicit Estimation CBS (EECBS) balance solution quality with computational efficiency using focal search mechanisms. While effective, traditional focal search faces a limitation: the lower bound (LB) value determining which nodes enter the FOCAL list often increases slowly in early search stages, resulting in a constrained search space that delays finding valid solutions. In this paper, we propose a novel bounded suboptimal algorithm, double-ECBS (DECBS), to address this issue by first determining the maximum LB value and then employing a best-first search guided by this LB to find a collision-free path. Experimental results demonstrate that DECBS outperforms ECBS in most test cases and is compatible with existing optimization techniques. DECBS can reduce nearly 30% high-level CT nodes and 50% low-level focal search nodes. When agent density is moderate to high, DECBS achieves a 23.5% average runtime improvement over ECBS with identical suboptimality bounds and optimizations.
Related papers
- Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
We present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques.
Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms.
Our techniques bring a new way of approaching the problem and a new level of precision to the field.
arXiv Detail & Related papers (2024-07-22T23:24:03Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - ITA-ECBS: A Bounded-Suboptimal Algorithm for the Combined Target-Assignment and Path-Finding Problem [20.090818762687565]
We introduce ITA-ECBS, the first bounded-suboptimal variant of ITA-CBS.
We show that it runs faster than ECBS-TA in 87.42% of 54,033 test cases.
arXiv Detail & Related papers (2024-04-08T06:36:42Z) - Double-Bounded Optimal Transport for Advanced Clustering and
Classification [58.237576976486544]
We propose Doubly Bounded Optimal Transport (DB-OT), which assumes that the target distribution is restricted within two boundaries instead of a fixed one.
We show that our method can achieve good results with our improved inference scheme in the testing stage.
arXiv Detail & Related papers (2024-01-21T07:43:01Z) - Solving Multi-Agent Target Assignment and Path Finding with a Single
Constraint Tree [9.518757918128799]
Combined Target-Assignment and Path-Finding problem (TAPF) requires simultaneously assigning targets to agents.
Conflict-Based Search with Target Assignment (CBS-TA) is a leading approach to address TAPF.
We show that, in theory, ITA-CBS is guaranteed to find an optimal solution and, in practice, is computationally efficient.
arXiv Detail & Related papers (2023-07-02T20:52:16Z) - Analysis Of The Anytime MAPF Solvers Based On The Combination Of
Conflict-Based Search (CBS) and Focal Search (FS) [2.320417845168326]
Conflict-Based Search (CBS) is a widely used algorithm for solving multi-agent pathfinding problems optimally.
To trade-off optimality for running time different variants of bounded sub-optimal CBS were designed.
We show that Focal Search on both levels of CBS can be beneficial in a wide range of setups.
arXiv Detail & Related papers (2022-09-20T11:05:14Z) - Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
Zooming Memory-Based Initialization [73.96101108943986]
A Needle-in-a-Haystack problem arises when there is an extreme imbalance of optimum conditions relative to the size of the dataset.
We present a Zooming Memory-Based Initialization algorithm that builds on conventional Bayesian optimization principles.
arXiv Detail & Related papers (2022-08-26T23:57:41Z) - $\beta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
We propose a simple-but-efficient regularization method, termed as Beta-Decay, to regularize the DARTS-based NAS searching process.
Experimental results on NAS-Bench-201 show that our proposed method can help to stabilize the searching process and makes the searched network more transferable across different datasets.
arXiv Detail & Related papers (2022-03-03T11:47:14Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial
Attack [74.5144793386864]
LSDAT crafts perturbations in the low-dimensional subspace formed by the sparse component of the input sample and that of an adversarial sample.
LSD works directly in the image pixel domain to guarantee that non-$ell$ constraints, such as sparsity, are satisfied.
arXiv Detail & Related papers (2021-03-19T13:10:47Z) - Improving Continuous-time Conflict Based Search [19.36475688888736]
Conflict-Based Search (CBS) is a powerful framework for optimally solving multi-agent path finding (MAPF) problems.
Continuous-time CBS (CCBS) is a recently proposed version of CBS that guarantees optimal solutions without the need to discretize time.
We show how to adapt successful CBS improvements, namely, prioritizing conflicts (PC), disjoint splitting (DS), and high-levelagents, to the continuous time setting of CCBS.
arXiv Detail & Related papers (2021-01-24T14:34:25Z) - EECBS: A Bounded-Suboptimal Search for Multi-Agent Path Finding [40.0986954496361]
Explicit Estimation CBS (EECBS) is a bounded-suboptimal variant of CBS that uses online learning to obtain inadmissible estimates of the cost of the solution of each high-level node.
EECBS runs significantly faster than the state-of-the-art bounded-suboptimal MAPF algorithms ECBS, BCP-7, and eMDD-SAT on a variety of MAPF instances.
arXiv Detail & Related papers (2020-10-03T14:19:00Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.