Context Gating in Spiking Neural Networks: Achieving Lifelong Learning through Integration of Local and Global Plasticity
- URL: http://arxiv.org/abs/2406.01883v1
- Date: Tue, 4 Jun 2024 01:35:35 GMT
- Title: Context Gating in Spiking Neural Networks: Achieving Lifelong Learning through Integration of Local and Global Plasticity
- Authors: Jiangrong Shen, Wenyao Ni, Qi Xu, Gang Pan, Huajin Tang,
- Abstract summary: Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC)
We propose SNN with context gating trained by the local plasticity rule (CG-SNN) for lifelong learning.
Experiments show that the proposed model is effective in maintaining the past learning experience and has better task-selectivity than other methods during lifelong learning.
- Score: 20.589970453110208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans learn multiple tasks in succession with minimal mutual interference, through the context gating mechanism in the prefrontal cortex (PFC). The brain-inspired models of spiking neural networks (SNN) have drawn massive attention for their energy efficiency and biological plausibility. To overcome catastrophic forgetting when learning multiple tasks in sequence, current SNN models for lifelong learning focus on memory reserving or regularization-based modification, while lacking SNN to replicate human experimental behavior. Inspired by biological context-dependent gating mechanisms found in PFC, we propose SNN with context gating trained by the local plasticity rule (CG-SNN) for lifelong learning. The iterative training between global and local plasticity for task units is designed to strengthen the connections between task neurons and hidden neurons and preserve the multi-task relevant information. The experiments show that the proposed model is effective in maintaining the past learning experience and has better task-selectivity than other methods during lifelong learning. Our results provide new insights that the CG-SNN model can extend context gating with good scalability on different SNN architectures with different spike-firing mechanisms. Thus, our models have good potential for parallel implementation on neuromorphic hardware and model human's behavior.
Related papers
- Similarity-based context aware continual learning for spiking neural networks [12.259720271932661]
We propose a Similarity-based Context Aware Spiking Neural Network (SCA-SNN) continual learning algorithm.
Based on contextual similarity across tasks, the SCA-SNN model can adaptively reuse neurons from previous tasks that are beneficial for new tasks.
Our algorithm has the capability to adaptively select similar groups of neurons for related tasks, offering a promising approach to enhancing the biological interpretability of efficient continual learning.
arXiv Detail & Related papers (2024-10-28T09:38:57Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Enhancing Efficient Continual Learning with Dynamic Structure
Development of Spiking Neural Networks [6.407825206595442]
Children possess the ability to learn multiple cognitive tasks sequentially.
Existing continual learning frameworks are usually applicable to Deep Neural Networks (DNNs)
We propose Dynamic Structure Development of Spiking Neural Networks (DSD-SNN) for efficient and adaptive continual learning.
arXiv Detail & Related papers (2023-08-09T07:36:40Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - An Unsupervised STDP-based Spiking Neural Network Inspired By
Biologically Plausible Learning Rules and Connections [10.188771327458651]
Spike-timing-dependent plasticity (STDP) is a general learning rule in the brain, but spiking neural networks (SNNs) trained with STDP alone is inefficient and perform poorly.
We design an adaptive synaptic filter and introduce the adaptive spiking threshold to enrich the representation ability of SNNs.
Our model achieves the current state-of-the-art performance of unsupervised STDP-based SNNs in the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-07-06T14:53:32Z) - A Synapse-Threshold Synergistic Learning Approach for Spiking Neural
Networks [1.8556712517882232]
Spiking neural networks (SNNs) have demonstrated excellent capabilities in various intelligent scenarios.
In this study, we develop a novel synergistic learning approach that involves simultaneously training synaptic weights and spike thresholds in SNNs.
arXiv Detail & Related papers (2022-06-10T06:41:36Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Exploring weight initialization, diversity of solutions, and degradation
in recurrent neural networks trained for temporal and decision-making tasks [0.0]
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure.
In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli.
arXiv Detail & Related papers (2019-06-03T21:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.