Predicting Team Performance from Communications in Simulated Search-and-Rescue
- URL: http://arxiv.org/abs/2503.03791v1
- Date: Wed, 05 Mar 2025 07:20:27 GMT
- Title: Predicting Team Performance from Communications in Simulated Search-and-Rescue
- Authors: Ali Jalal-Kamali, Nikolos Gurney, David Pynadath,
- Abstract summary: We analyze conversational data to identify team traits and their correlation with teaming outcomes.<n>Our findings show that variations in teaming outcomes can be explained through these inferences.
- Score: 1.2289361708127877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how individual traits influence team performance is valuable, but these traits are not always directly observable. Prior research has inferred traits like trust from behavioral data. We analyze conversational data to identify team traits and their correlation with teaming outcomes. Using transcripts from a Minecraft-based search-and-rescue experiment, we apply topic modeling and clustering to uncover key interaction patterns. Our findings show that variations in teaming outcomes can be explained through these inferences, with different levels of predictive power derived from individual traits and team dynamics.
Related papers
- ML-SPEAK: A Theory-Guided Machine Learning Method for Studying and Predicting Conversational Turn-taking Patterns [25.049072387358244]
We develop a computational model of conversational turn-taking within self-organized teams.
By bridging the gap between individual personality traits and team communication patterns, our model has the potential to inform theories of team processes.
arXiv Detail & Related papers (2024-11-23T01:27:01Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - Active Learning of Ordinal Embeddings: A User Study on Football Data [4.856635699699126]
Humans innately measure distance between instances in an unlabeled dataset using an unknown similarity function.
This work uses deep metric learning to learn these user-defined similarity functions from few annotations for a large football trajectory dataset.
arXiv Detail & Related papers (2022-07-26T07:55:23Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Predicting Relationship Labels and Individual Personality Traits from
Telecommunication History in Social Networks using Hawkes Processes [5.668126716715423]
Mobile phones contain a wealth of private information, so we try to keep them secure.
We provide large-scale evidence that the psychological profiles of individuals and their relations with their peers can be predicted from seemingly anonymous communication traces.
arXiv Detail & Related papers (2020-09-04T07:24:49Z) - Self-Attention Attribution: Interpreting Information Interactions Inside
Transformer [89.21584915290319]
We propose a self-attention attribution method to interpret the information interactions inside Transformer.
We show that the attribution results can be used as adversarial patterns to implement non-targeted attacks towards BERT.
arXiv Detail & Related papers (2020-04-23T14:58:22Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
We consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals.
We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets.
arXiv Detail & Related papers (2020-02-18T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.