論文の概要: Multi-Agent Systems Powered by Large Language Models: Applications in Swarm Intelligence
- arxiv url: http://arxiv.org/abs/2503.03800v1
- Date: Wed, 05 Mar 2025 17:13:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 17:59:00.549877
- Title: Multi-Agent Systems Powered by Large Language Models: Applications in Swarm Intelligence
- Title(参考訳): 大規模言語モデルによるマルチエージェントシステム:Swarm Intelligenceの応用
- Authors: Cristian Jimenez-Romero, Alper Yegenoglu, Christian Blum,
- Abstract要約: 本研究では,大規模言語モデル(LLM)のマルチエージェントシミュレーションへの統合を,エージェントのハードコードプログラムをLLM駆動のプロンプトに置き換えることにより検討する。
提案手法は群集知能の分野での複雑なシステムの2つの例(アリコロニー採餌と鳥の群れ)の文脈で実証されている。
- 参考スコア(独自算出の注目度): 0.8602553195689513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work examines the integration of large language models (LLMs) into multi-agent simulations by replacing the hard-coded programs of agents with LLM-driven prompts. The proposed approach is showcased in the context of two examples of complex systems from the field of swarm intelligence: ant colony foraging and bird flocking. Central to this study is a toolchain that integrates LLMs with the NetLogo simulation platform, leveraging its Python extension to enable communication with GPT-4o via the OpenAI API. This toolchain facilitates prompt-driven behavior generation, allowing agents to respond adaptively to environmental data. For both example applications mentioned above, we employ both structured, rule-based prompts and autonomous, knowledge-driven prompts. Our work demonstrates how this toolchain enables LLMs to study self-organizing processes and induce emergent behaviors within multi-agent environments, paving the way for new approaches to exploring intelligent systems and modeling swarm intelligence inspired by natural phenomena. We provide the code, including simulation files and data at https://github.com/crjimene/swarm_gpt.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)のマルチエージェントシミュレーションへの統合を,エージェントのハードコードプログラムをLLM駆動のプロンプトに置き換えることにより検討する。
提案手法は群集知能の分野での複雑なシステムの2つの例(アリコロニー採餌と鳥の群れ)の文脈で実証されている。
この研究の中心は、LPMをNetLogoシミュレーションプラットフォームに統合し、Python拡張を活用してOpenAI API経由でGPT-4oとの通信を可能にするツールチェーンである。
このツールチェーンは、エージェントが環境データに適応して応答できるように、プロンプト駆動の行動生成を促進する。
上記の2つのサンプルアプリケーションでは、構造化されたルールベースのプロンプトと、自律的な知識駆動プロンプトの両方を使用します。
我々の研究は、このツールチェーンによって、LLMが自己組織化プロセスを研究し、マルチエージェント環境内で創発的な振る舞いを誘発し、自然現象にインスパイアされたインテリジェントなシステムを探索し、群知性をモデル化するための新しいアプローチの道を開くことを実証している。
シミュレーションファイルやデータをhttps://github.com/crjimene/swarm_gpt.comで提供します。
関連論文リスト
- MooseAgent: A LLM Based Multi-agent Framework for Automating Moose Simulation [1.729730091778761]
本稿では,マルチ物理シミュレーションフレームワークMOOSEのための自動解法フレームワークMooseAgentを提案する。
MooseAgentは、大規模事前訓練言語モデル(LLM)とマルチエージェントシステムを組み合わせる。
その結果,MooseAgentはMOOSEシミュレーションプロセスをある程度自動化できることがわかった。
論文 参考訳(メタデータ) (2025-04-11T15:25:50Z) - debug-gym: A Text-Based Environment for Interactive Debugging [55.11603087371956]
大規模言語モデル(LLM)は、コーディングタスクにますます依存している。
LLMは、タスクに関連する情報を集めるために対話的にAを探索する能力の恩恵を受けることができると仮定する。
対話型符号化環境において,LLMベースのエージェントを開発するためのテキスト環境,すなわちデバッグジャムを提案する。
論文 参考訳(メタデータ) (2025-03-27T14:43:28Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - API Agents vs. GUI Agents: Divergence and Convergence [35.28490346033735]
APIとGUIベースの大規模言語モデル(LLM)は、グラフィカルなユーザインターフェースを人間的な方法で操作する。
本稿では,それらの分散と潜在的収束を系統的に解析する。
LLMベースの自動化における継続的なイノベーションは、APIとGUI駆動エージェントの境界線を曖昧にする可能性があることを示唆している。
論文 参考訳(メタデータ) (2025-03-14T04:26:21Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
会話に関わる人間の知性の重要な側面を再現するために設計されたマルチモジュールフレームワークを導入する。
アプローチの第2段階では、これらの会話データは、フィルタリングとラベル付けの後に、強化学習のためのトレーニングおよびテストデータとして機能する。
論文 参考訳(メタデータ) (2025-02-28T03:18:39Z) - Reinforcement Learning for Long-Horizon Interactive LLM Agents [56.9860859585028]
インタラクティブデジタルエージェント(IDA)は、ステートフルなデジタル環境のAPIを利用して、ユーザの要求に応じてタスクを実行する。
対象環境で直接IDAを訓練する強化学習(RL)手法を提案する。
我々は、近似ポリシー最適化のデータおよびメモリ効率の亜種である LOOP を導出する。
論文 参考訳(メタデータ) (2025-02-03T18:35:42Z) - IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems [2.2810745411557316]
IntellAgentは、対話型AIシステムを評価するためのスケーラブルでオープンソースのフレームワークである。
IntellAgentは、ポリシー駆動グラフモデリング、リアルイベント生成、対話型ユーザエージェントシミュレーションを組み合わせることで、合成ベンチマークの作成を自動化する。
我々の研究は、IntellAgentが、研究と展開の橋渡しの課題に対処することで、会話AIを前進させるための効果的なフレームワークであることを示した。
論文 参考訳(メタデータ) (2025-01-19T14:58:35Z) - Lifelong Learning of Large Language Model based Agents: A Roadmap [39.01532420650279]
連続的・漸進的な学習として知られる生涯学習は、人工知能(AGI)を前進させる重要な要素である
この調査は、生涯学習を大規模言語モデル(LLM)に組み込むための潜在的テクニックを体系的にまとめる最初のものである。
これらの柱が集合的に連続的な適応を可能にし、破滅的な忘れを軽減し、長期的なパフォーマンスを向上させる方法について強調する。
論文 参考訳(メタデータ) (2025-01-13T12:42:04Z) - Large Action Models: From Inception to Implementation [51.81485642442344]
大規模アクションモデル(LAM)は動的環境内でのアクション生成と実行のために設計されている。
LAMは、AIを受動的言語理解からアクティブなタスク完了に変換する可能性を秘めている。
創発から展開まで,LAMを体系的に開発するための総合的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-13T11:19:56Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
身体視覚言語モデル(VLM)は多モード認識と推論において大きな進歩を遂げた。
このギャップを埋めるために、我々は、計画と操作を接続する媒体として実行可能なコード生成を使用する、具体化された視覚言語プログラマであるOctopusを紹介した。
Octopusは、1)エージェントの視覚的およびテキスト的タスクの目的を正確に理解し、2)複雑なアクションシーケンスを定式化し、3)実行可能なコードを生成するように設計されている。
論文 参考訳(メタデータ) (2023-10-12T17:59:58Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。