論文の概要: MooseAgent: A LLM Based Multi-agent Framework for Automating Moose Simulation
- arxiv url: http://arxiv.org/abs/2504.08621v1
- Date: Fri, 11 Apr 2025 15:25:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:20:19.386273
- Title: MooseAgent: A LLM Based Multi-agent Framework for Automating Moose Simulation
- Title(参考訳): MooseAgent: モースシミュレーションを自動化するLLMベースのマルチエージェントフレームワーク
- Authors: Tao Zhang, Zhenhai Liu, Yong Xin, Yongjun Jiao,
- Abstract要約: 本稿では,マルチ物理シミュレーションフレームワークMOOSEのための自動解法フレームワークMooseAgentを提案する。
MooseAgentは、大規模事前訓練言語モデル(LLM)とマルチエージェントシステムを組み合わせる。
その結果,MooseAgentはMOOSEシミュレーションプロセスをある程度自動化できることがわかった。
- 参考スコア(独自算出の注目度): 1.729730091778761
- License:
- Abstract: The Finite Element Method (FEM) is widely used in engineering and scientific computing, but its pre-processing, solver configuration, and post-processing stages are often time-consuming and require specialized knowledge. This paper proposes an automated solution framework, MooseAgent, for the multi-physics simulation framework MOOSE, which combines large-scale pre-trained language models (LLMs) with a multi-agent system. The framework uses LLMs to understand user-described simulation requirements in natural language and employs task decomposition and multi-round iterative verification strategies to automatically generate MOOSE input files. To improve accuracy and reduce model hallucinations, the system builds and utilizes a vector database containing annotated MOOSE input cards and function documentation. We conducted experimental evaluations on several typical cases, including heat transfer, mechanics, phase field, and multi-physics coupling. The results show that MooseAgent can automate the MOOSE simulation process to a certain extent, especially demonstrating a high success rate when dealing with relatively simple single-physics problems. The main contribution of this research is the proposal of a multi-agent automated framework for MOOSE, which validates its potential in simplifying finite element simulation processes and lowering the user barrier, providing new ideas for the development of intelligent finite element simulation software. The code for the MooseAgent framework proposed in this paper has been open-sourced and is available at https://github.com/taozhan18/MooseAgent
- Abstract(参考訳): 有限要素法(FEM)は工学や科学計算で広く使われているが、前処理、ソルバの構成、後処理の段階は時間を要することが多く、専門的な知識を必要とする。
本稿では,大規模事前学習言語モデル(LLM)とマルチエージェントシステムを組み合わせたマルチ物理シミュレーションフレームワークMOOSEのための自動解法MooseAgentを提案する。
このフレームワークは、自然言語のユーザ記述されたシミュレーション要求を理解するためにLLMを使用し、タスク分解とマルチラウンド反復検証戦略を用いてMOOSE入力ファイルを自動生成する。
精度を向上し、モデル幻覚を低減するため、アノテーション付きMOOSE入力カードと関数文書を含むベクトルデータベースを構築し、利用する。
熱伝達, 力学, 位相場, 多物理結合など, いくつかの典型例について実験を行った。
その結果,MooseAgentはMOOSEシミュレーションプロセスをある程度自動化できることがわかった。
この研究の主な貢献はMOOSEのためのマルチエージェント自動フレームワークの提案であり、これは有限要素シミュレーションプロセスの簡素化とユーザ障壁の低減の可能性を検証し、インテリジェントな有限要素シミュレーションソフトウェアを開発するための新しいアイデアを提供する。
この論文で提案されたMooseAgentフレームワークのコードはオープンソース化され、https://github.com/taozhan18/MooseAgentで公開されている。
関連論文リスト
- I-MCTS: Enhancing Agentic AutoML via Introspective Monte Carlo Tree Search [10.718560472954644]
イントロスペクティブモンテカルロ木探索(Introspective Monte Carlo Tree Search, I-MCTS)は、イントロスペクティブプロセスを通じてツリーノードを反復的に拡張する新しいアプローチである。
我々は,各ノードの解の直接評価を容易にするために,LLM(Large Language Model)ベースの値モデルを統合する。
当社のアプローチでは,強力なオープンソースAutoMLエージェントと比較して,パフォーマンスが6%向上している。
論文 参考訳(メタデータ) (2025-02-20T16:19:09Z) - LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
自動プロンプト工学(APE)のための新しいフレームワーク LLM-AutoDiff について紹介する。
LLMs-AutoDiffは、各テキスト入力をトレーニング可能なパラメータとして扱い、フリーズした後方エンジンを使用して、テキスト勾配に対するフィードバック・アキンを生成する。
精度とトレーニングコストの両方において、既存のテキスト勾配ベースラインを一貫して上回ります。
論文 参考訳(メタデータ) (2025-01-28T03:18:48Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
本研究の目的は,マルチエージェントサンプリングによるデータ合成の問題を調べることでギャップを埋めることである。
逐次サンプリングプロセス中にワークフローが反復的に進化する木探索に基づくオーケストレーションエージェント(TOA)を紹介する。
アライメント、機械翻訳、数学的推論に関する実験は、マルチエージェントサンプリングが推論計算スケールとしてシングルエージェントサンプリングを著しく上回ることを示した。
論文 参考訳(メタデータ) (2024-12-22T15:16:44Z) - Quantum Machine Learning in Log-based Anomaly Detection: Challenges and Opportunities [36.437593835024394]
我々は、LogADのコンテキストでQMLモデルを評価するための統合フレームワーク、我々のフレームワークを紹介します。
DeepLog、LogAnomaly、LogRobustといった最先端のメソッドが私たちのフレームワークに含まれている。
評価はQMLの性能に重要な要素、例えば特異性、回路数、回路設計、量子状態符号化にまで及んでいる。
論文 参考訳(メタデータ) (2024-12-18T06:13:49Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAMは、新しいマルチエージェントコラボレーションフレームワークである。
入力として自然言語のみを用いてCFDシミュレーションタスクを完了することを目的としている。
MetaGPTのアセンブリラインパラダイムのパワーを利用する。
論文 参考訳(メタデータ) (2024-07-31T04:01:08Z) - AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks [37.48197934228379]
コンピュータビジョンのためのエンドツーエンドモデルプロダクションワークフロー全体を自動化するAutoMLシステムはありません。
本稿では、ユーザの自然言語要求を理解し、プロダクション対応モデルを生成するワークフロー全体を実行することを含む、新しいリクエスト・ツー・モデルタスクを提案する。
これにより、専門家でない個人が、ユーザフレンドリーな言語インターフェースを通じて、タスク固有のモデルを簡単に構築できるようになる。
論文 参考訳(メタデータ) (2024-02-23T14:38:19Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
本稿では,高度にスケーラブルなコンポーネントワイドブースティングアルゴリズムを用いて適用可能な,解釈可能な付加モデルを構築するAutoMLシステムを提案する。
我々のシステムは、部分的な効果やペアの相互作用を可視化するなど、簡単なモデル解釈のためのツールを提供する。
解釈可能なモデル空間に制限があるにもかかわらず、我々のシステムは、ほとんどのデータセットにおける予測性能の点で競争力がある。
論文 参考訳(メタデータ) (2021-09-12T18:34:33Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
エネルギー効率のよいメタラーニングフレームワークを提案する。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
論文 参考訳(メタデータ) (2021-05-31T08:15:44Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
代替アプローチを実現するフレームワークであるIFAQ(Iterative Functional Aggregate Queries)を紹介する。
IFAQは、特徴抽出クエリと学習タスクを、IFAQのドメイン固有言語で与えられた1つのプログラムとして扱う。
IFAQ の Scala 実装が mlpack,Scikit,特殊化を数桁で上回り,線形回帰木モデルや回帰木モデルを複数の関係データセット上で処理可能であることを示す。
論文 参考訳(メタデータ) (2020-01-10T16:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。