Quantum metasurfaces as probes of vacuum particle content
- URL: http://arxiv.org/abs/2503.03838v1
- Date: Wed, 05 Mar 2025 19:04:20 GMT
- Title: Quantum metasurfaces as probes of vacuum particle content
- Authors: Germain Tobar, Joshua Foo, Sofia Qvarfort, Fabio Costa, Rivka Bekenstein, Magdalena Zych,
- Abstract summary: Quantum mirror made from two-dimensional sub-wavelength array of atoms.<n>First practical platform for observing particle content from entangled spatial sub-regions of electromagnetic field vacuum.
- Score: 0.08605038103235942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum vacuum of the electromagnetic field is inherently entangled across distinct spatial sub-regions, resulting in non-trivial particle content across these sub-regions. However, accessing this particle content in a controlled laboratory experiment has remained far out of experimental reach. Here we propose to overcome this challenge with a quantum mirror made from a two-dimensional sub-wavelength array of atoms that divides a photonic cavity. The array's response to light is tunable between transmissive and reflective states by a control atom that is excited to a Rydberg state. We find that photon content from entangled sub-regions of the vacuum causes frequency shifts that are accessible in existing experimental setups. This feasibility stems from the system's unique ability to create coherent superpositions of transmissive and reflective states, providing the first practical platform for directly observing particle content from entangled spatial sub-regions of the electromagnetic field vacuum.
Related papers
- Experimentally separating vacuum fluctuations from source radiation [0.0]
In 1932, Fermi introduced the two-atom problem, which explores how two atoms interact with the surrounding electromagnetic field via vacuum and source-radiation induced processes.<n>Recent advancements in ultrafast optics have enabled experimental analogues using two laser pulses inside a nonlinear crystal.<n>We show that vacuum fluctuations and source radiation correlate different quadratures of near-infrared laser pulses, allowing them to be individually probed.
arXiv Detail & Related papers (2025-02-25T13:51:53Z) - Multimode Ultrastrong Coupling in Three-Dimensional Photonic-Crystal Cavities [36.212701687134064]
One-dimensional photonic-crystal cavities have uniform spatial profiles in the lateral plane.
Fabrication challenges have hindered the achievement of strong coupling in 3D-PCCs.
We report the realization of multimode ultrastrong coupling in a 3D-PCC at terahertz frequencies.
arXiv Detail & Related papers (2023-08-23T21:14:01Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - A subwavelength atomic array switched by a single Rydberg atom [0.0]
Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science.
Cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings.
We demonstrate spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space.
arXiv Detail & Related papers (2022-07-19T16:27:44Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Breakdown of the topological protection by cavity vacuum fields in the
integer quantum Hall effect [0.0]
The control of the electronic properties of materials via the vacuum fields of cavity electromagnetic resonators is one of the emerging frontiers of condensed matter physics.
We show here that the enhancement of vacuum field fluctuations in subwavelength split-ring resonators dramatically affects arguably one of the most paradigmatic quantum protectorates, namely the quantum Hall electron transport in high-mobility 2D electron gases.
arXiv Detail & Related papers (2021-07-29T16:14:15Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Realizing an Unruh-DeWitt detector through electro-optic sampling of the
electromagnetic vacuum [0.0]
We present a new theoretical framework to describe the experimental advances in electro-optic detection of broadband quantum states.
We discuss the specific working regime of such processes, and the consequences through characterization of the quantum light involved in the detection.
arXiv Detail & Related papers (2021-03-26T10:04:07Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.