論文の概要: Surgical Gaussian Surfels: Highly Accurate Real-time Surgical Scene Rendering
- arxiv url: http://arxiv.org/abs/2503.04079v1
- Date: Thu, 06 Mar 2025 04:33:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:59:41.391106
- Title: Surgical Gaussian Surfels: Highly Accurate Real-time Surgical Scene Rendering
- Title(参考訳): 外科用ガウスサーフェル : 高精度リアルタイム手術シーンレンダリング
- Authors: Idris O. Sunmola, Zhenjun Zhao, Samuel Schmidgall, Yumeng Wang, Paul Maria Scheikl, Axel Krieger,
- Abstract要約: 異方性点プリミティブを表面整列楕円形スプラットに変換する手術用ガウスサーフェルス(SGS)を導入する。
本手法は, 表面形状, 正常な地図品質, レンダリング効率において, 現状の手法よりも優れる2つの外科的データセットを用いて評価した。
- 参考スコア(独自算出の注目度): 2.205583950882153
- License:
- Abstract: Accurate geometric reconstruction of deformable tissues in monocular endoscopic video remains a fundamental challenge in robot-assisted minimally invasive surgery. Although recent volumetric and point primitive methods based on neural radiance fields (NeRF) and 3D Gaussian primitives have efficiently rendered surgical scenes, they still struggle with handling artifact-free tool occlusions and preserving fine anatomical details. These limitations stem from unrestricted Gaussian scaling and insufficient surface alignment constraints during reconstruction. To address these issues, we introduce Surgical Gaussian Surfels (SGS), which transforms anisotropic point primitives into surface-aligned elliptical splats by constraining the scale component of the Gaussian covariance matrix along the view-aligned axis. We predict accurate surfel motion fields using a lightweight Multi-Layer Perceptron (MLP) coupled with locality constraints to handle complex tissue deformations. We use homodirectional view-space positional gradients to capture fine image details by splitting Gaussian Surfels in over-reconstructed regions. In addition, we define surface normals as the direction of the steepest density change within each Gaussian surfel primitive, enabling accurate normal estimation without requiring monocular normal priors. We evaluate our method on two in-vivo surgical datasets, where it outperforms current state-of-the-art methods in surface geometry, normal map quality, and rendering efficiency, while remaining competitive in real-time rendering performance. We make our code available at https://github.com/aloma85/SurgicalGaussianSurfels
- Abstract(参考訳): 単眼内視鏡画像における変形性組織の正確な再構成は、ロボットによる最小侵襲手術の基本的な課題である。
神経放射野(NeRF)と3次元ガウス原始体に基づく最近の体積的および点的原始的手法は外科的シーンを効率よくレンダリングしているが、人工物のない道具の閉塞処理や微細な解剖学的詳細の保存に苦慮している。
これらの制限は、制限のないガウスのスケーリングと、再構成中の表面アライメントの制約に起因している。
これらの問題に対処するために、我々は、ガウスの共分散行列のスケール成分をビューアライン軸に沿って制限することにより、異方性点プリミティブを楕円スプラットに変換する手術用ガウスサーフェルス(SGS)を導入する。
我々は,軽量多層パーセプトロン(MLP)と局所性制約を併用し,複雑な組織変形を処理することで,高精度なサーベイル運動場を推定する。
我々は、超再構成領域でガウスサーフィンを分割することで、画像の細部を捉えるために、水平視空間位置勾配を用いる。
さらに,表面正規化を各ガウス・サーベイル・プリミティブ内の最も急な密度変化の方向として定義し,単分子正規化を必要とせずに正確な正規化推定を可能にする。
実時間レンダリング性能に競争力を維持しつつ, 表面形状, 正規地図品質, レンダリング効率において, 現在の最先端の手法よりも優れていた2つの外科的データセットについて評価を行った。
コードはhttps://github.com/aloma85/SurgicalGaussianSurfelsで公開しています。
関連論文リスト
- DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
本稿では,自己教師型ガウススプラッティング表現であるDeSiRe-GSについて述べる。
複雑な駆動シナリオにおいて、効率的な静的・動的分解と高忠実な表面再構成を可能にする。
論文 参考訳(メタデータ) (2024-11-18T05:49:16Z) - SurgicalGS: Dynamic 3D Gaussian Splatting for Accurate Robotic-Assisted Surgical Scene Reconstruction [18.074890506856114]
幾何学的精度を向上した手術シーン再構築のための動的3次元ガウススプレイティングフレームワークであるStagementGSを提案する。
提案手法は,まず奥行き先を用いてガウス点雲を初期化し,深度変化の大きい画素を識別するために二元運動マスクを用い,フレーム間の深度マップから点雲を融合して初期化する。
フレキシブル変形モデルを用いて動的シーンを表現し、教師なし深度スムースネス制約とともに正規化深度正規化損失を導入し、より正確な幾何再構成を実現する。
論文 参考訳(メタデータ) (2024-10-11T22:46:46Z) - Neural Octahedral Field: Octahedral prior for simultaneous smoothing and sharp edge regularization [9.167571374234166]
そこで本研究では,オクタヘドラル場(Octahedral field)の新たな変種下での表面再構成を導くことを提案する。
暗黙の幾何とともに八面体を同時に嵌め、滑らかにすることで、二元フィルタリングと類似して振る舞う。
提案手法は, 様々な実験において, 従来型, ニューラルなアプローチより優れている。
論文 参考訳(メタデータ) (2024-08-01T06:02:59Z) - Gaussian Primitives for Deformable Image Registration [9.184092856125067]
脳MRI、肺CT、心臓MRIのデータセットの実験結果から、GaussianDIRは既存のDIR法よりも精度と効率が優れていることが示されている。
トレーニングなしのアプローチとして、反復的手法は本質的に遅く、一般化不足の限界を超越しているというステレオタイプに挑戦する。
論文 参考訳(メタデータ) (2024-06-05T15:44:54Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - High-quality Surface Reconstruction using Gaussian Surfels [18.51978059665113]
本稿では,3次元ガウス点におけるフレキシブルな最適化手法の利点を組み合わせるために,新しい点ベース表現であるガウス波について提案する。
これは、3Dガウス点のzスケールを0に設定し、元の3D楕円体を2D楕円形に効果的に平らにする。
局所的なz軸を通常の方向として扱うことにより、最適化安定性と表面アライメントを大幅に改善する。
論文 参考訳(メタデータ) (2024-04-27T04:13:39Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。