論文の概要: Gaussian Primitives for Deformable Image Registration
- arxiv url: http://arxiv.org/abs/2406.03394v2
- Date: Wed, 16 Oct 2024 11:48:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:38:52.000185
- Title: Gaussian Primitives for Deformable Image Registration
- Title(参考訳): 変形可能な画像登録のためのガウス的プリミティブ
- Authors: Jihe Li, Xiang Liu, Fabian Zhang, Xia Li, Xixin Cao, Ye Zhang, Joachim Buhmann,
- Abstract要約: 脳MRI、肺CT、心臓MRIのデータセットの実験結果から、GaussianDIRは既存のDIR法よりも精度と効率が優れていることが示されている。
トレーニングなしのアプローチとして、反復的手法は本質的に遅く、一般化不足の限界を超越しているというステレオタイプに挑戦する。
- 参考スコア(独自算出の注目度): 9.184092856125067
- License:
- Abstract: Deformable Image Registration (DIR) is essential for aligning medical images that exhibit anatomical variations, facilitating applications such as disease tracking and radiotherapy planning. While classical iterative methods and deep learning approaches have achieved success in DIR, they are often hindered by computational inefficiency or poor generalization. In this paper, we introduce GaussianDIR, a novel, case-specific optimization DIR method inspired by 3D Gaussian splatting. In general, GaussianDIR represents image deformations using a sparse set of mobile and flexible Gaussian primitives, each defined by a center position, covariance, and local rigid transformation. This compact and explicit representation reduces noise and computational overhead while improving interpretability. Furthermore, the movement of individual voxel is derived via blending the local rigid transformation of the neighboring Gaussian primitives. By this, GaussianDIR captures both global smoothness and local rigidity as well as reduces the computational burden. To address varying levels of deformation complexity, GaussianDIR also integrates an adaptive density control mechanism that dynamically adjusts the density of Gaussian primitives. Additionally, we employ multi-scale Gaussian primitives to capture both coarse and fine deformations, reducing optimization to local minima. Experimental results on brain MRI, lung CT, and cardiac MRI datasets demonstrate that GaussianDIR outperforms existing DIR methods in both accuracy and efficiency, highlighting its potential for clinical applications. Finally, as a training-free approach, it challenges the stereotype that iterative methods are inherently slow and transcend the limitations of poor generalization.
- Abstract(参考訳): 変形性画像登録(DIR)は、解剖学的変異を示す医用画像の整列に不可欠であり、疾患追跡や放射線治療計画などの応用を促進する。
古典的反復法やディープラーニングアプローチはDIRで成功したが、計算の非効率性や一般化の低さによって妨げられていることが多い。
本稿では,新しいケース固有DIR手法であるGaussianDIRについて紹介する。
一般に、ガウス的DIRは、中心位置、共分散、局所剛性変換によってそれぞれ定義される、移動および柔軟なガウス的プリミティブのスパースセットを用いて画像変形を表現する。
このコンパクトで明示的な表現は、解釈性を改善しながらノイズと計算オーバーヘッドを低減する。
さらに、個々のボクセルの運動は、隣接するガウス原始体の局所的な剛性変換をブレンドすることによって引き起こされる。
これにより、ガウシアンDIRはグローバルな滑らかさと局所的な剛性の両方を捉え、計算負担を軽減できる。
変形複雑性の様々なレベルに対処するために、ガウスDIRは適応密度制御機構を統合し、ガウス原始体の密度を動的に調整する。
さらに,多スケールガウスプリミティブを用いて粗い変形と微細変形を捕捉し,局所最小値への最適化を低減した。
脳MRI、肺CT、心臓MRIデータセットの実験結果から、GaussianDIRは既存のDIR法を精度と効率の両方で上回っており、臨床応用の可能性を強調している。
最後に、トレーニングなしのアプローチとして、反復的手法が本質的に遅いというステレオタイプに挑戦し、貧弱な一般化の限界を超越する。
関連論文リスト
- PixelGaussian: Generalizable 3D Gaussian Reconstruction from Arbitrary Views [116.10577967146762]
PixelGaussianは、任意の視点から一般化可能な3Dガウス再構成を学習するための効率的なフレームワークである。
提案手法は,様々な視点によく一般化した最先端性能を実現する。
論文 参考訳(メタデータ) (2024-10-24T17:59:58Z) - DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering [30.30749508345767]
デジタル再構成ラジオグラフィ(DRR)は3次元CTボリュームから生成された2次元X線画像である。
そこで本研究では, DRR 生成を効率よく, 微分可能な DRR 生成で実現し, 現実的な物理にインスパイアされた X-ray シミュレーションを取り入れた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T17:39:31Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting [4.675221539472143]
大規模なデータセットに正規ノイズが汚染されたスパースガウス過程回帰モデルを適用するためのスケーラブルな推論アルゴリズムを提案する。
提案手法は, 人工ニューラルネットワークベースラインと比較して, 類似のカバレッジと精度の予測間隔が短いことを示す。
論文 参考訳(メタデータ) (2024-02-27T15:08:57Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
局所近似過程回帰を用いて特定のひずみ空間における応力出力を予測する方法を示す。
FE設定におけるグローバル構造問題を解決する場合のlaGPR近似の局所的性質に適応するために、修正されたニュートン・ラフソン手法が提案される。
論文 参考訳(メタデータ) (2021-05-07T14:49:28Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。