論文の概要: Ecomap: Sustainability-Driven Optimization of Multi-Tenant DNN Execution on Edge Servers
- arxiv url: http://arxiv.org/abs/2503.04148v1
- Date: Thu, 06 Mar 2025 06:56:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:57:18.760693
- Title: Ecomap: Sustainability-Driven Optimization of Multi-Tenant DNN Execution on Edge Servers
- Title(参考訳): Ecomap: エッジサーバ上でのマルチテナントDNN実行の持続可能性駆動最適化
- Authors: Varatheepan Paramanayakam, Andreas Karatzas, Dimitrios Stamoulis, Iraklis Anagnostopoulos,
- Abstract要約: 本稿では,実時間炭素強度に基づいてエッジデバイスの最大出力閾値を調整するフレームワークであるEcomapを紹介する。
NVIDIA Jetson AGX Xavierを用いた実験の結果、Ecomapは二酸化炭素排出量を平均30%削減することが示された。
- 参考スコア(独自算出の注目度): 0.44784055850794474
- License:
- Abstract: Edge computing systems struggle to efficiently manage multiple concurrent deep neural network (DNN) workloads while meeting strict latency requirements, minimizing power consumption, and maintaining environmental sustainability. This paper introduces Ecomap, a sustainability-driven framework that dynamically adjusts the maximum power threshold of edge devices based on real-time carbon intensity. Ecomap incorporates the innovative use of mixed-quality models, allowing it to dynamically replace computationally heavy DNNs with lighter alternatives when latency constraints are violated, ensuring service responsiveness with minimal accuracy loss. Additionally, it employs a transformer-based estimator to guide efficient workload mappings. Experimental results using NVIDIA Jetson AGX Xavier demonstrate that Ecomap reduces carbon emissions by an average of 30% and achieves a 25% lower carbon delay product (CDP) compared to state-of-the-art methods, while maintaining comparable or better latency and power efficiency.
- Abstract(参考訳): エッジコンピューティングシステムは、厳格なレイテンシ要件を満たし、消費電力を最小限に抑え、環境の持続可能性を維持しながら、複数の並列ディープニューラルネットワーク(DNN)ワークロードを効率的に管理する。
本稿では,実時間炭素強度に基づいてエッジデバイスの最大出力閾値を動的に調整するサステナビリティ駆動型フレームワークであるEcomapを紹介する。
Ecomapは、混合品質モデルの革新的な利用を取り入れており、レイテンシ制約に違反した場合、計算的に重いDNNをより軽量な代替品に動的に置き換えることができ、サービスの応答性を最小限の精度損失で確保できる。
さらに、効率的なワークロードマッピングをガイドするために、トランスフォーマーベースの推定器を使用している。
NVIDIA Jetson AGX Xavierを用いた実験の結果、Ecomapは平均30%の二酸化炭素排出量を削減し、最先端の手法と比較して25%低い炭素遅延生成(CDP)を実現し、同等あるいは優れたレイテンシと電力効率を維持している。
関連論文リスト
- Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity [39.483346492111515]
線形リカレントニューラルネットワークは、推論中に一定のメモリ使用量と時間毎の時間を含む強力な長距離シーケンスモデリングを可能にする。
非構造化空間は、互換性のあるハードウェアプラットフォームによって加速されるときに、計算とメモリの要求を大幅に削減できる魅力的なソリューションを提供する。
非常に疎い線形RNNは、高密度ベースラインよりも高い効率と性能のトレードオフを一貫して達成している。
論文 参考訳(メタデータ) (2025-02-03T13:09:21Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - SpiDR: A Reconfigurable Digital Compute-in-Memory Spiking Neural Network Accelerator for Event-based Perception [8.968583287058959]
スパイキングニューラルネットワーク(SNN)は、ダイナミックビジョンセンサー(DVS)によって生成された非同期時間データを効率的に処理する方法を提供する。
既存のSNNアクセラレータは、多様なニューロンモデル、ビット精度、ネットワークサイズへの適応性の制限に悩まされている。
本稿では,CIM (Citical Compute-in-Memory) SNNアクセラレーターを,拡張性および再構成性を備えたチップ名として提案する。
論文 参考訳(メタデータ) (2024-11-05T06:59:02Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNetは動的ネットワークの理論的および実用的な効率ギャップを橋渡しするフレームワークである。
3つの主要な動的パラダイム - 適応型計算、動的層スキップ、動的チャネルスキップ - を統合している。
これにより、V100,3090やTX2 GPUのようなプラットフォーム上で、ResNetのようなモデルの遅延を50%以上削減できる。
論文 参考訳(メタデータ) (2023-08-30T10:57:41Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Precision-aware Latency and Energy Balancing on Multi-Accelerator
Platforms for DNN Inference [22.9834921448069]
我々は,チップ上で異なるアクセラレーター間で細粒度マッピングを行うハードウェア認識ツールであるODiMOを提案する。
ODiMOは,手動マッピングと比較して,限界精度低下(-0.53%/-0.32%)で,最大33%/31%のエネルギー/遅延を減少させることを示した。
論文 参考訳(メタデータ) (2023-06-08T09:23:46Z) - DVFO: Learning-Based DVFS for Energy-Efficient Edge-Cloud Collaborative
Inference [12.095934624748686]
本稿では,新しいDVFS対応エッジクラウド協調推論フレームワークであるDVFOを提案する。
エッジデバイスのCPU、GPU、メモリの周波数を自動的に最適化し、機能マップをクラウドサーバにオフロードする。
最先端の計画に比べて、エネルギー消費を平均で33%削減する。
論文 参考訳(メタデータ) (2023-06-02T07:00:42Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
BERTのようなトランスフォーマーベースの言語モデルでは、自然言語処理(NLP)タスクの精度が大幅に向上する。
We present EdgeBERT, a in-deepth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP。
論文 参考訳(メタデータ) (2020-11-28T19:21:47Z) - DRACO: Co-Optimizing Hardware Utilization, and Performance of DNNs on
Systolic Accelerator [5.65116500037191]
協調最適化(DRACO)を考慮したデータ再利用計算を提案する。
DRACOは、データフロー/マイクロアーキテクチャの変更を必要とせずに、メモリバウンドDNNのPE利用を改善する。
従来の最適化手法とは異なり、DRACOは性能とエネルギー効率を最大化するだけでなく、DNNの予測性能も向上する。
論文 参考訳(メタデータ) (2020-06-26T17:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。