論文の概要: Ticktack : Long Span Temporal Alignment of Large Language Models Leveraging Sexagenary Cycle Time Expression
- arxiv url: http://arxiv.org/abs/2503.04150v1
- Date: Thu, 06 Mar 2025 06:59:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:32.752745
- Title: Ticktack : Long Span Temporal Alignment of Large Language Models Leveraging Sexagenary Cycle Time Expression
- Title(参考訳): Ticktack : Sexagenary Cycle Time Expressionを利用した大規模言語モデルの長期時間アライメント
- Authors: Xue Han, Qian Hu, Yitong Wang, Wenchun Gao, Lianlian Zhang, Qing Wang, Lijun Mei, Chao Deng, Junlan Feng,
- Abstract要約: 大規模言語モデル(LLM)は、特に長期にわたって時間的ミスアライメントの問題に悩まされる。
本稿では,LLMの長期的不整合に対処する手法として,Ticktack(ティックタック)を提案する。
- 参考スコア(独自算出の注目度): 25.654941426797926
- License:
- Abstract: Large language models (LLMs) suffer from temporal misalignment issues especially across long span of time. The issue arises from knowing that LLMs are trained on large amounts of data where temporal information is rather sparse over long times, such as thousands of years, resulting in insufficient learning or catastrophic forgetting by the LLMs. This paper proposes a methodology named "Ticktack" for addressing the LLM's long-time span misalignment in a yearly setting. Specifically, we first propose to utilize the sexagenary year expression instead of the Gregorian year expression employed by LLMs, achieving a more uniform distribution in yearly granularity. Then, we employ polar coordinates to model the sexagenary cycle of 60 terms and the year order within each term, with additional temporal encoding to ensure LLMs understand them. Finally, we present a temporal representational alignment approach for post-training LLMs that effectively distinguishes time points with relevant knowledge, hence improving performance on time-related tasks, particularly over a long period. We also create a long time span benchmark for evaluation. Experimental results prove the effectiveness of our proposal.
- Abstract(参考訳): 大規模言語モデル(LLM)は、特に長期にわたって時間的ミスアライメントの問題に悩まされる。
この問題は、LLMが何千年もの間、時間的情報が比較的希薄な大量のデータに基づいて訓練されていることを知り、学習不足やLLMによる破滅的な忘れが生じる。
本稿では,LLMの長期的不整合に対処する手法として,Ticktack(ティックタック)を提案する。
具体的には, LLMが採用するグレゴリオ暦の年式の代わりに, 年次表現を活用することを提案し, 年次粒度のより均一な分布を実現する。
次に、極座標を用いて60項の性周期と各項の年順をモデル化し、LLMがそれらを理解するための時間エンコーディングを追加する。
最後に,学習後LLMの時間的表現的アライメント手法を提案し,時間的タスク,特に長時間の時間的タスクにおけるパフォーマンスを効果的に評価する。
また、評価のための長期スパンベンチマークを作成します。
実験の結果,提案の有効性が証明された。
関連論文リスト
- Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
大規模言語モデル (LLM) は時系列解析に広く応用されている。
しかし、数発の分類(すなわち重要な訓練シナリオ)におけるそれらの実用性は過小評価されている。
データ不足を克服するために,LLMの学習済み知識を幅広く活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-30T03:59:59Z) - Large Language Models Can Self-Improve in Long-context Reasoning [100.52886241070907]
大規模言語モデル(LLM)は、長いコンテキストの処理においてかなりの進歩を遂げているが、それでも長いコンテキストの推論に苦慮している。
我々はこの目的のために特別に設計されたアプローチである我々の提案する。
人類の専門家や 先進的なモデルによるデータに依存する 従来のアプローチと比べて 優れたパフォーマンスを達成しています
論文 参考訳(メタデータ) (2024-11-12T19:53:00Z) - What is Wrong with Perplexity for Long-context Language Modeling? [71.34933096461124]
長いコンテキスト入力は、会話の拡張、文書の要約、多数のショットインコンテキスト学習といったタスクにおいて、大きな言語モデル(LLM)にとって不可欠である。
パープレキシティ(PPL)は、長期コンテキスト能力の評価には信頼性が低いことが証明されている。
長短コンテキストコントラスト法を用いて鍵トークンを識別する手法であるbfLongPPLを提案する。
論文 参考訳(メタデータ) (2024-10-31T09:39:28Z) - Towards Time Series Reasoning with LLMs [0.4369058206183195]
本稿では,ゼロショット性能の強い領域にまたがる一般化可能な情報を学習する,新しいマルチモーダル時系列LPM手法を提案する。
提案モデルでは,特定の時系列特徴を反映した潜時表現を学習し,ゼロショット推論タスクのセットにおいてGPT-4oより優れることを示す。
論文 参考訳(メタデータ) (2024-09-17T17:23:44Z) - LAMPO: Large Language Models as Preference Machines for Few-shot Ordinal Classification [34.9210323553677]
LAMPOは,Large Language Models (LLMs) を多クラス順序分類タスクに応用した新しいパラダイムである。
7つの公開データセットに関する大規模な実験は、多様なアプリケーションにわたるLAMPOの極めて競争力のあるパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-08-06T15:55:05Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
本稿では,マルチスケール位置決めについて紹介する。
(Ms-PoE)は、シンプルで効果的なプラグアンドプレイ方式で、キャパシティを向上させる。
LLMはコンテキストの中央に位置する関連情報を扱う。
論文 参考訳(メタデータ) (2024-03-05T04:58:37Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
大規模言語モデル(LLM)は多くの分野に適用され、近年急速に発展してきた。
近年の研究では、大規模な言語モデルを、さらなる微調整を行なわずに、アンフェロショット時系列推論として扱っている。
本研究は,LLMが周期性に欠けるデータセットにおいて,明確なパターンや傾向を持つ時系列予測において良好に機能することを示す。
論文 参考訳(メタデータ) (2024-02-16T17:15:28Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning [67.39585115936329]
LLMには、微調整なしで長いコンテキストを処理できる固有の能力がある、と我々は主張する。
バイレベルアテンション情報を構築することで,LLMのコンテキストウィンドウを拡張するためのSelfExtendを提案する。
複数のベンチマークで包括的な実験を行い、その結果、既存のLLMのコンテキストウィンドウ長を効果的に拡張できることが示されている。
論文 参考訳(メタデータ) (2024-01-02T18:30:51Z) - Are Large Language Models Temporally Grounded? [38.481606493496514]
文章を記述したLarge Language Model (LLM) を提供する。
イベントの構造と持続時間に関する常識的な知識に関して、それらを調査する。
これらの能力を反映した3つの課題に対して,最先端のLCMを評価した。
論文 参考訳(メタデータ) (2023-11-14T18:57:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。