Conformal forecasting for surgical instrument trajectory
- URL: http://arxiv.org/abs/2503.04191v2
- Date: Tue, 11 Mar 2025 20:10:02 GMT
- Title: Conformal forecasting for surgical instrument trajectory
- Authors: Sara Sangalli, Gary Sarwin, Ertunc Erdil, Alessandro Carretta, Victor Staartjes, Carlo Serra, Ender Konukoglu,
- Abstract summary: We explore the application of conformal prediction and conformalized quantile regression to estimate uncertainty in forecasting surgical instrument motion.<n>To the best of our knowledge, this is the first study applying conformal prediction to surgical guidance.
- Score: 45.93365846335903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting surgical instrument trajectories and predicting the next surgical action recently started to attract attention from the research community. Both these tasks are crucial for automation and assistance in endoscopy surgery. Given the safety-critical nature of these tasks, reliable uncertainty quantification is essential. Conformal prediction is a fast-growing and widely recognized framework for uncertainty estimation in machine learning and computer vision, offering distribution-free, theoretically valid prediction intervals. In this work, we explore the application of standard conformal prediction and conformalized quantile regression to estimate uncertainty in forecasting surgical instrument motion, i.e., predicting direction and magnitude of surgical instruments' future motion. We analyze and compare their coverage and interval sizes, assessing the impact of multiple hypothesis testing and correction methods. Additionally, we show how these techniques can be employed to produce useful uncertainty heatmaps. To the best of our knowledge, this is the first study applying conformal prediction to surgical guidance, marking an initial step toward constructing principled prediction intervals with formal coverage guarantees in this domain.
Related papers
- Statistical Inference for Responsiveness Verification [15.571656327462142]
We introduce a formal validation procedure for the responsiveness of predictions with respect to interventions on their features.<n>We describe how to estimate responsiveness for the predictions of any model and any dataset using only black-box access.<n>We develop algorithms that construct these estimates by generating a uniform sample of reachable points.
arXiv Detail & Related papers (2025-07-02T21:50:08Z) - Quantitative Predictive Monitoring and Control for Safe Human-Machine Interaction [16.465501381705774]
unsafe human-machine interaction can lead to catastrophic failures.<n>We propose a novel approach that predicts future states by accounting for the uncertainty of human interaction.<n>We apply the proposed approach to two case studies: Type 1 Diabetes management and semi-autonomous driving.
arXiv Detail & Related papers (2024-12-17T22:46:39Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.
We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.
Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
This study investigates how a suite of novel quasi-real-time variables can improve the forecasting models of patient flows.
The prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts.
arXiv Detail & Related papers (2022-11-01T20:42:26Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
This work advances the understanding of uncertainty estimation for classification and risk prediction on medical data.
In a data-scarce field such as healthcare, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools.
arXiv Detail & Related papers (2020-04-13T08:46:41Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z) - Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications [2.446672595462589]
The Intensive Care Unit (ICU) is a hospital department where machine learning has the potential to provide valuable assistance in clinical decision making.
In practice, uncertain predictions should be presented to doctors with extra care in order to prevent potentially catastrophic treatment decisions.
We show how Bayesian modelling and the predictive uncertainty that it provides can be used to mitigate risk of misguided prediction.
arXiv Detail & Related papers (2019-06-20T13:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.