Incorporating Surrogate Gradient Norm to Improve Offline Optimization Techniques
- URL: http://arxiv.org/abs/2503.04242v1
- Date: Thu, 06 Mar 2025 09:24:23 GMT
- Title: Incorporating Surrogate Gradient Norm to Improve Offline Optimization Techniques
- Authors: Manh Cuong Dao, Phi Le Nguyen, Thao Nguyen Truong, Trong Nghia Hoang,
- Abstract summary: We develop a model-agnostic approach to offline optimization.<n>We show that reducing surrogate sharpness on the offline dataset provably reduces its generalized sharpness on unseen data.<n>Our analysis extends existing theories from bounding generalized prediction loss (on unseen data) with loss sharpness to bounding the worst-case generalized surrogate sharpness with its empirical estimate on training data.
- Score: 8.750390242872138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline optimization has recently emerged as an increasingly popular approach to mitigate the prohibitively expensive cost of online experimentation. The key idea is to learn a surrogate of the black-box function that underlines the target experiment using a static (offline) dataset of its previous input-output queries. Such an approach is, however, fraught with an out-of-distribution issue where the learned surrogate becomes inaccurate outside the offline data regimes. To mitigate this, existing offline optimizers have proposed numerous conditioning techniques to prevent the learned surrogate from being too erratic. Nonetheless, such conditioning strategies are often specific to particular surrogate or search models, which might not generalize to a different model choice. This motivates us to develop a model-agnostic approach instead, which incorporates a notion of model sharpness into the training loss of the surrogate as a regularizer. Our approach is supported by a new theoretical analysis demonstrating that reducing surrogate sharpness on the offline dataset provably reduces its generalized sharpness on unseen data. Our analysis extends existing theories from bounding generalized prediction loss (on unseen data) with loss sharpness to bounding the worst-case generalized surrogate sharpness with its empirical estimate on training data, providing a new perspective on sharpness regularization. Our extensive experimentation on a diverse range of optimization tasks also shows that reducing surrogate sharpness often leads to significant improvement, marking (up to) a noticeable 9.6% performance boost. Our code is publicly available at https://github.com/cuong-dm/IGNITE
Related papers
- Offline Model-Based Optimization: Comprehensive Review [61.91350077539443]
offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets.
Recent advances in model-based optimization have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models.
Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review.
arXiv Detail & Related papers (2025-03-21T16:35:02Z) - Learning Surrogates for Offline Black-Box Optimization via Gradient Matching [29.831762991506242]
We present a theoretical framework to understand offline black-box optimization, by explicitly bounding the optimization quality based on how well the surrogate matches the latent gradient field that underlines the offline data.<n>Inspired by our principled analysis, we propose a black-box gradient matching algorithm to create effective surrogate models for offline optimization, improving over prior approaches on various real-world benchmarks.
arXiv Detail & Related papers (2025-02-26T22:35:54Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Offline Model-Based Optimization via Policy-Guided Gradient Search [30.87992788876113]
We introduce a new learning-to-search- gradient perspective for offline optimization by reformulating it as an offline reinforcement learning problem.
Our proposed policy-guided search approach explicitly learns the best policy for a given surrogate model created from the offline data.
arXiv Detail & Related papers (2024-05-08T18:27:37Z) - Discounted Adaptive Online Learning: Towards Better Regularization [5.5899168074961265]
We study online learning in adversarial nonstationary environments.
We propose an adaptive (i.e., instance optimal) algorithm that improves the widespread non-adaptive baseline.
We also consider the (Gibbs and Candes, 2021)-style online conformal prediction problem.
arXiv Detail & Related papers (2024-02-05T04:29:39Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
We first identify a fundamental pattern, self-excitation, as the primary cause of Q-value estimation divergence in offline RL.
We then propose a novel Self-Excite Eigenvalue Measure (SEEM) metric to measure the evolving property of Q-network at training.
For the first time, our theory can reliably decide whether the training will diverge at an early stage.
arXiv Detail & Related papers (2023-10-06T17:57:44Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Model-based Offline Imitation Learning with Non-expert Data [7.615595533111191]
We propose a scalable model-based offline imitation learning algorithmic framework that leverages datasets collected by both suboptimal and optimal policies.
We show that the proposed method textitalways outperforms Behavioral Cloning in the low data regime on simulated continuous control domains.
arXiv Detail & Related papers (2022-06-11T13:08:08Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
We introduce a new lower bound to the marginal likelihood, which allows us to perform inference for a larger class of likelihood functions.
We work towards bringing this approach to neural networks by using an architecture with a Gaussian process in the last layer.
arXiv Detail & Related papers (2021-06-14T15:40:51Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.