論文の概要: On Fact and Frequency: LLM Responses to Misinformation Expressed with Uncertainty
- arxiv url: http://arxiv.org/abs/2503.04271v1
- Date: Thu, 06 Mar 2025 10:02:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:49.323483
- Title: On Fact and Frequency: LLM Responses to Misinformation Expressed with Uncertainty
- Title(参考訳): 不確かさで表現された誤報に対するLDM応答について
- Authors: Yana van de Sande, Gunes Açar, Thabo van Woudenberg, Martha Larson,
- Abstract要約: 本研究では,3つの LLM の誤報に対する応答を検証し,不確定な文に変換した。
以上の結果から, LLMは, 事実確認分類を偽物から偽物に変更し, 25%の症例で偽物に分類した。
例外はドクサスティック変換であり、それは「それは信じる...」のような言語的キュー句を使う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We study LLM judgments of misinformation expressed with uncertainty. Our experiments study the response of three widely used LLMs (GPT-4o, LlaMA3, DeepSeek-v2) to misinformation propositions that have been verified false and then are transformed into uncertain statements according to an uncertainty typology. Our results show that after transformation, LLMs change their factchecking classification from false to not-false in 25% of the cases. Analysis reveals that the change cannot be explained by predictors to which humans are expected to be sensitive, i.e., modality, linguistic cues, or argumentation strategy. The exception is doxastic transformations, which use linguistic cue phrases such as "It is believed ...".To gain further insight, we prompt the LLM to make another judgment about the transformed misinformation statements that is not related to truth value. Specifically, we study LLM estimates of the frequency with which people make the uncertain statement. We find a small but significant correlation between judgment of fact and estimation of frequency.
- Abstract(参考訳): 我々は不確実性で表現された誤報のLCM判定について検討した。
本実験では,3種類のLLM(GPT-4o,LlaMA3,DeepSeek-v2)の誤報に対する応答について検討した。
以上の結果から, LLMは, 事実確認分類を偽物から偽物に変更し, 25%の症例で偽物に分類した。
分析によれば、この変化は人間が敏感であると予想される予測者、すなわちモダリティ、言語的手がかり、あるいは議論戦略によって説明できない。
例外はドクサスティック変換であり、それは「それは信じる...」のような言語的キューのフレーズを使用する。
さらなる洞察を得るために、我々はLLMに真の価値とは無関係な変換された偽情報文について別の判断をするよう促す。
具体的には,不確実な発言を行う頻度のLLM推定について検討する。
事実判定と周波数推定との間には,小さいが有意な相関関係が認められた。
関連論文リスト
- Fostering Appropriate Reliance on Large Language Models: The Role of Explanations, Sources, and Inconsistencies [66.30619782227173]
大規模言語モデル(LLMs)は、流動的で説得力のある誤った応答を生成することができる。
ユーザの信頼を形作るLCM応答のいくつかの特徴を同定する。
説明は正しい応答と誤応答の両方に依存することが判明した。
情報源が提供された場合や説明が矛盾している場合の誤った応答への依存度は低い。
論文 参考訳(メタデータ) (2025-02-12T16:35:41Z) - Fool Me, Fool Me: User Attitudes Toward LLM Falsehoods [13.62116438805314]
本研究では,Large Language Models (LLMs) による偽造応答に関するユーザの嗜好について検討する。
意外なことに、ユーザの61%は、マークされたものよりも、マークされていない偽りの応答を好む。
以上の結果から,LLM学習に影響を及ぼすユーザの嗜好が不注意に偽造を促進させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-12-16T10:10:27Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
大規模言語モデル(LLM)は意思決定に広く使用されているが、特に医療などの重要なタスクにおける信頼性は十分に確立されていない。
本稿では,LSMが生成する応答の不確実性が,入力プロンプトで提供される情報とどのように関連しているかを検討する。
本稿では,LLMが応答を生成する方法を説明し,プロンプトと応答の不確実性の関係を理解するためのプロンプト応答の概念モデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T11:19:58Z) - Truth is Universal: Robust Detection of Lies in LLMs [18.13311575803723]
大きな言語モデル(LLM)は自然言語処理に革命をもたらし、印象的な人間的な能力を示している。
本研究では,LLMが横になっていることを検知するロバストな手法を開発することを目的とする。
我々は、真と偽の文の活性化ベクトルを分離できる2次元部分空間の存在を実証する。
この発見は普遍的であり、Gemma-7B、LLaMA2-13B、Mistral-7B、LLaMA3-8Bなど様々なLLMを保有している。
我々の分析は、過去の研究で観察された一般化の失敗を説明し、さらなる段階を定めている。
論文 参考訳(メタデータ) (2024-07-03T13:01:54Z) - "I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust [51.542856739181474]
不確実性の自然言語表現の違いが、参加者の信頼、信頼、全体的なタスクパフォーマンスにどのように影響するかを示す。
その結果, 一人称表情は, 参加者のシステムに対する信頼度を低下させ, 参加者の正確性を高めつつ, システムの回答に同調する傾向にあることがわかった。
以上の結果から,不確実性の自然言語表現の使用は,LLMの過度な依存を軽減するための効果的なアプローチである可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-01T16:43:55Z) - Fact-and-Reflection (FaR) Improves Confidence Calibration of Large Language Models [84.94220787791389]
ファクト・アンド・リフレクション(FaR)プロンプトを提案し,LLMキャリブレーションを2ステップで改善する。
実験の結果、FaRはキャリブレーションが大幅に向上し、期待される誤差を23.5%下げた。
FaRは、信頼性の低いシナリオにおいて、言語的に関心を表現できる能力さえも持っています。
論文 参考訳(メタデータ) (2024-02-27T01:37:23Z) - Quantifying Uncertainty in Natural Language Explanations of Large
Language Models [29.34960984639281]
大規模言語モデル (LLM) は、高スループット自然言語処理 (NLP) アプリケーションのための強力なツールとして、ますます使われている。
生成された説明の不確かさを定量化するために、$textitVerbalized Uncertainty$と$textitProbing Uncertainty$という2つの新しいメトリクスを提案します。
ベンチマークデータセットの実証分析により、言語化された不確実性は説明の信頼性の信頼できる見積りではないことが判明した。
論文 参考訳(メタデータ) (2023-11-06T21:14:40Z) - Language Models Hallucinate, but May Excel at Fact Verification [89.0833981569957]
大規模言語モデル (LLM) はしばしば「ハロシン化 (hallucinate)」し、結果として非実効出力となる。
GPT-3.5でさえ、実際の出力は25%以下である。
これは、進捗を計測し、インセンティブを与えるために、事実検証の重要性を浮き彫りにする。
論文 参考訳(メタデータ) (2023-10-23T04:39:01Z) - Do Large Language Models Know about Facts? [60.501902866946]
大規模言語モデル(LLM)は、最近、さまざまな自然言語処理タスクにおいて、大幅なパフォーマンス改善を推進している。
我々は,ベンチマークPinocchioを設計し,LLM内の事実知識の範囲と範囲を評価することを目的とする。
Pinocchioには、異なるソース、タイムライン、ドメイン、リージョン、言語にまたがる20万のさまざまな事実質問が含まれている。
論文 参考訳(メタデータ) (2023-10-08T14:26:55Z) - How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking
Unrelated Questions [34.53980255211931]
大きな言語モデル(LLM)は、実証可能な意味で真実を「知る」にもかかわらず、偽の文を出力するものとして定義できる。
そこで本研究では,LSMのアクティベーションへのアクセスや,問題となっている事実の地味な知識を必要としない簡易な嘘検出装置を開発する。
シンプルさにもかかわらず、この嘘検出装置は非常に正確で、驚くほど一般的です。
論文 参考訳(メタデータ) (2023-09-26T16:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。