GBT-SAM: A Parameter-Efficient Depth-Aware Model for Generalizable Brain tumour Segmentation on mp-MRI
- URL: http://arxiv.org/abs/2503.04325v2
- Date: Fri, 07 Mar 2025 10:22:10 GMT
- Title: GBT-SAM: A Parameter-Efficient Depth-Aware Model for Generalizable Brain tumour Segmentation on mp-MRI
- Authors: Cecilia Diana-Albelda, Roberto Alcover-Couso, Álvaro García-Martín, Jesus Bescos, Marcos Escudero-Viñolo,
- Abstract summary: GBT-SAM is a novel framework that extends the Segment Anything Model (SAM) to brain tumour segmentation tasks.<n>It achieves state-of-the-art performance on the Adult Glioma dataset.<n>It demonstrates robust generalization across Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets.
- Score: 5.7802171590699984
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gliomas are brain tumours that stand out for their highly lethal and aggressive nature, which demands a precise approach in their diagnosis. Medical image segmentation plays a crucial role in the evaluation and follow-up of these tumours, allowing specialists to analyse their morphology. However, existing methods for automatic glioma segmentation often lack generalization capability across other brain tumour domains, require extensive computational resources, or fail to fully utilize the multi-parametric MRI (mp-MRI) data used to delineate them. In this work, we introduce GBT-SAM, a novel Generalizable Brain Tumour (GBT) framework that extends the Segment Anything Model (SAM) to brain tumour segmentation tasks. Our method employs a two-step training protocol: first, fine-tuning the patch embedding layer to process the entire mp-MRI modalities, and second, incorporating parameter-efficient LoRA blocks and a Depth-Condition block into the Vision Transformer (ViT) to capture inter-slice correlations. GBT-SAM achieves state-of-the-art performance on the Adult Glioma dataset (Dice Score of $93.54$) while demonstrating robust generalization across Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. Furthermore, GBT-SAM uses less than 6.5M trainable parameters, thus offering an efficient solution for brain tumour segmentation. \\ Our code and models are available at https://github.com/vpulab/med-sam-brain .
Related papers
- MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
We propose MAST-Pro, a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation.
Specifically, text and anatomical prompts provide domain-specific priors guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning.
Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average improvement while reducing trainable parameters by 91.04%, without compromising accuracy.
arXiv Detail & Related papers (2025-03-18T15:39:44Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.<n>Method achieves state-of-the-art performance on both public and in-house datasets.
arXiv Detail & Related papers (2024-12-10T10:32:09Z) - Magnetic Resonance Imaging Feature-Based Subtyping and Model Ensemble for Enhanced Brain Tumor Segmentation [6.14919256198409]
We propose a deep learning-based ensemble approach that integrates state-of-the-art segmentation models.<n>Given the heterogeneous nature of the tumors present in the BraTS datasets, this approach enhances the precision and generalizability of segmentation models.
arXiv Detail & Related papers (2024-12-05T12:00:00Z) - Intraoperative Glioma Segmentation with YOLO + SAM for Improved Accuracy in Tumor Resection [1.9461727843485295]
Gliomas present significant surgical challenges due to similarity to healthy tissue.
MRI images are often ineffective during surgery due to factors such as brain shift.
This paper presents a deep learning pipeline combining You Only Look Once Version 8 (Yv8) and Segment Anything Model Vision Transformer-base.
arXiv Detail & Related papers (2024-08-27T07:58:08Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
This study evaluates the efficacy of the Multi-Planner U-Net (MPUnet) approach in segmenting different tumor subregions across three challenging datasets.
arXiv Detail & Related papers (2024-01-12T10:46:19Z) - Segment Anything Model for Brain Tumor Segmentation [3.675657219384998]
Glioma is a prevalent brain tumor that poses a significant health risk to individuals.
The Segment Anything Model, released by Meta AI, is a fundamental model in image segmentation and has excellent zero-sample generalization capabilities.
In this study, we evaluated the performance of SAM on brain tumor segmentation and found that without any model fine-tuning, there is still a gap between SAM and the current state-of-the-art(SOTA) model.
arXiv Detail & Related papers (2023-09-15T14:33:03Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
arXiv Detail & Related papers (2020-12-22T23:16:43Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.