Learning Causal Response Representations through Direct Effect Analysis
- URL: http://arxiv.org/abs/2503.04358v1
- Date: Thu, 06 Mar 2025 12:01:41 GMT
- Title: Learning Causal Response Representations through Direct Effect Analysis
- Authors: Homer Durand, Gherardo Varando, Gustau Camps-Valls,
- Abstract summary: We propose a novel approach for learning causal response representations.<n>Our method aims to extract directions in which a multidimensional outcome is most directly caused by a treatment variable.
- Score: 3.881388090216841
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel approach for learning causal response representations. Our method aims to extract directions in which a multidimensional outcome is most directly caused by a treatment variable. By bridging conditional independence testing with causal representation learning, we formulate an optimisation problem that maximises the evidence against conditional independence between the treatment and outcome, given a conditioning set. This formulation employs flexible regression models tailored to specific applications, creating a versatile framework. The problem is addressed through a generalised eigenvalue decomposition. We show that, under mild assumptions, the distribution of the largest eigenvalue can be bounded by a known $F$-distribution, enabling testable conditional independence. We also provide theoretical guarantees for the optimality of the learned representation in terms of signal-to-noise ratio and Fisher information maximisation. Finally, we demonstrate the empirical effectiveness of our approach in simulation and real-world experiments. Our results underscore the utility of this framework in uncovering direct causal effects within complex, multivariate settings.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
We study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation.<n>First, we derive a novel high-dimensional probability convergence guarantee that depends explicitly on the variance and holds under weak conditions.<n>We further establish refined high-dimensional Berry-Esseen bounds over the class of convex sets that guarantee faster rates than those in the literature.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.
By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.
We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
We introduce a unified causal model specifically designed for multimodal data.
We show that multimodal contrastive representation learning excels at identifying latent coupled variables.
Experiments demonstrate the robustness of our findings, even when the assumptions are violated.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
We consider the problem of learning the exact skeleton of general discrete Bayesian networks from potentially corrupted data.
We propose to optimize the most adverse risk over a family of distributions within bounded Wasserstein distance or KL divergence to the empirical distribution.
We present efficient algorithms and show the proposed methods are closely related to the standard regularized regression approach.
arXiv Detail & Related papers (2023-11-10T15:33:19Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment
Analysis [56.84237932819403]
This paper aims to estimate and mitigate the bad effect of textual modality for strong OOD generalization.
Inspired by this, we devise a model-agnostic counterfactual framework for multimodal sentiment analysis.
arXiv Detail & Related papers (2022-07-24T03:57:40Z) - Deviance Matrix Factorization [6.509665408765348]
We investigate a general matrix factorization for deviance-based data losses, extending the ubiquitous singular value decomposition beyond squared error loss.
Our method leverages classical statistical methodology from generalized linear models (GLMs) and provides an efficient algorithm that is flexible enough to allow for structural zeros via entry weights.
arXiv Detail & Related papers (2021-10-12T01:27:55Z) - Loss Bounds for Approximate Influence-Based Abstraction [81.13024471616417]
Influence-based abstraction aims to gain leverage by modeling local subproblems together with the 'influence' that the rest of the system exerts on them.
This paper investigates the performance of such approaches from a theoretical perspective.
We show that neural networks trained with cross entropy are well suited to learn approximate influence representations.
arXiv Detail & Related papers (2020-11-03T15:33:10Z) - Correlation Robust Influence Maximization [5.508091917582913]
We propose a distributionally robust model for the influence problem.
We seek a seed set whose expected influence under the worst correlation is maximized.
We show that this worst-case influence can be efficiently computed.
arXiv Detail & Related papers (2020-10-24T04:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.