論文の概要: Training-Free Graph Filtering via Multimodal Feature Refinement for Extremely Fast Multimodal Recommendation
- arxiv url: http://arxiv.org/abs/2503.04406v1
- Date: Thu, 06 Mar 2025 13:00:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:26.057508
- Title: Training-Free Graph Filtering via Multimodal Feature Refinement for Extremely Fast Multimodal Recommendation
- Title(参考訳): 超高速マルチモーダルレコメンデーションのためのマルチモーダル特徴補充による学習自由グラフフィルタリング
- Authors: Yu-Seung Roh, Joo-Young Kim, Jin-Duk Park, Won-Yong Shin,
- Abstract要約: 効率的なマルチモーダルレコメンデーションのためのマルチモーダルグラフフィルタリング(MM-GF)を提案する。
MM-GFは、グラフフィルタリング(GF)の概念に基づく、効率的かつ正確なマルチモーダルレコメンデーションに基づく、トレーニング不要な手法である。
実世界のベンチマークデータセットの実験は、MM-GFが推奨精度を最大13.35%向上するだけでなく、ランタイムを10秒未満で達成することで計算コストを大幅に削減することを示した。
- 参考スコア(独自算出の注目度): 8.462186629861046
- License:
- Abstract: Multimodal recommender systems improve the performance of canonical recommender systems with no item features by utilizing diverse content types such as text, images, and videos, while alleviating inherent sparsity of user-item interactions and accelerating user engagement. However, current neural network-based models often incur significant computational overhead due to the complex training process required to learn and integrate information from multiple modalities. To overcome this limitation, we propose MultiModal-Graph Filtering (MM-GF), a training-free method based on the notion of graph filtering (GF) for efficient and accurate multimodal recommendations. Specifically, MM-GF first constructs multiple similarity graphs through nontrivial multimodal feature refinement such as robust scaling and vector shifting by addressing the heterogeneous characteristics across modalities. Then, MM-GF optimally fuses multimodal information using linear low-pass filters across different modalities. Extensive experiments on real-world benchmark datasets demonstrate that MM-GF not only improves recommendation accuracy by up to 13.35% compared to the best competitor but also dramatically reduces computational costs by achieving the runtime of less than 10 seconds.
- Abstract(参考訳): マルチモーダルレコメンデータシステムは、テキスト、画像、ビデオなどの多様なコンテンツタイプを活用することで、標準的レコメンデータシステムの性能を向上させるとともに、ユーザとイテムの相互作用の本質的な疎さを緩和し、ユーザエンゲージメントを加速する。
しかし、現在のニューラルネットワークベースのモデルは、複数のモダリティから情報を学び、統合するのに必要とされる複雑なトレーニングプロセスのために、大きな計算オーバーヘッドを引き起こすことが多い。
この制限を克服するため,マルチモーダルグラフフィルタ (MM-GF) を提案する。
具体的には、MM-GF はまず、頑健なスケーリングやベクトルシフトといった非自明なマルチモーダル特徴改善を通じて、モーダル性にまたがる不均一な特性に対処することによって、複数の類似性グラフを構築する。
そして、MM-GFは、異なるモードにわたる線形ローパスフィルタを用いて、最適にマルチモーダル情報を融合する。
実世界のベンチマークデータセットに対する大規模な実験は、MM-GFが推奨精度を最大13.35%向上するだけでなく、ランタイムを10秒未満で達成することで計算コストを大幅に削減することを示した。
関連論文リスト
- MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching [54.740256498985026]
キーポイントの検出と記述方法は、しばしばマルチモーダルデータと競合する。
マルチモーダル画像マッチングにおけるキーポイント記述に対するモダリティ不変特徴量を計算するためのモダリティ不変特徴量学習ネットワーク(MIFNet)を提案する。
論文 参考訳(メタデータ) (2025-01-20T06:56:30Z) - Multimodality Helps Few-shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
FS-PCS (Few-shot 3D point cloud segmentation) は、最小のサポートサンプルで新しいカテゴリを分割するモデルを一般化することを目的としている。
テキストラベルと潜在的に利用可能な2次元画像モダリティを利用したマルチモーダルFS-PCS構成を提案する。
トレーニングバイアスを軽減するため,テスト時間適応型クロスモーダル(TACC)技術を提案する。
論文 参考訳(メタデータ) (2024-10-29T19:28:41Z) - M$^{2}$M: Learning controllable Multi of experts and multi-scale operators are the Partial Differential Equations need [43.534771810528305]
本稿では,PDEを効率的にシミュレートし,学習するためのマルチスケール・マルチエキスパート(M$2$M)ニューラル演算子のフレームワークを提案する。
我々は、動的ルータポリシーのために、マルチエキスパートゲートネットワークをトレーニングするために、分断方式を採用する。
提案手法は,専門家の選択権を決定する制御可能な事前ゲーティング機構を組み込んで,モデルの効率を向上させる。
論文 参考訳(メタデータ) (2024-10-01T15:42:09Z) - Train Once, Deploy Anywhere: Matryoshka Representation Learning for Multimodal Recommendation [27.243116376164906]
マルチモーダルレコメンデーションのための大規模Matryoshka表現学習(fMRLRec)という軽量フレームワークを導入する。
当社のfMRLRecは,複数次元にわたる効率的なレコメンデーションのための情報表現を学習し,各項目の特徴を異なる粒度で捉えている。
複数のベンチマークデータセットに対するfMRLRecの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-09-25T05:12:07Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
フラットローカルミニマの新しい視点からマルチモーダルリコメンデータシステムの解析を行う。
我々はミラーグラディエント(MG)と呼ばれる簡潔で効果的な勾配戦略を提案する。
提案したMGは、既存の堅牢なトレーニング手法を補完し、多様な高度なレコメンデーションモデルに容易に拡張できることが判明した。
論文 参考訳(メタデータ) (2024-02-17T12:27:30Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
本稿では,変分グラフオートエンコーダを用いて学習した表現を組み込む新しいフレームワークとして,変分埋め込み協調フィルタリング(GVECF)を導入する。
提案手法は,テストデータに対するリコールを最大13.78%改善する。
論文 参考訳(メタデータ) (2023-11-20T15:01:33Z) - Efficient Multimodal Fusion via Interactive Prompting [62.08292938484994]
大規模事前学習は、コンピュータビジョンや自然言語処理のような一助的な分野を新しい時代にもたらした。
本稿では,一様事前学習型変圧器の融合に適した効率的かつ柔軟な多モード融合法PMFを提案する。
論文 参考訳(メタデータ) (2023-04-13T07:31:51Z) - Dynamic Multimodal Fusion [8.530680502975095]
動的マルチモーダル融合(DynMM)は,マルチモーダルデータを適応的に融合し,推論中にデータ依存の前方経路を生成する新しい手法である。
様々なマルチモーダルタスクの結果は、我々のアプローチの効率性と幅広い適用性を示している。
論文 参考訳(メタデータ) (2022-03-31T21:35:13Z) - Sparse Fusion for Multimodal Transformers [7.98117428941095]
Sparse Fusion Transformers (SFT) は, トランスの新しい多モード融合法である。
我々のアイデアの鍵は、モダリティ間のモデリングに先立って単調なトークンセットを減らすスパースプールブロックである。
最新の性能は、同様の実験条件下で複数のベンチマークで得られ、計算コストとメモリ要求の最大6倍の削減を報告している。
論文 参考訳(メタデータ) (2021-11-23T16:43:49Z) - Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
Filtering [59.349057602266]
変分オートエンコーダ (VAE) は, 協調フィルタリングの非線形手法として拡張されている。
内積に基づくソフトマックス確率を逆多重インデックスに基づいて分解する。
FastVAEはサンプリング品質と効率の両面で最先端のベースラインを上回っます。
論文 参考訳(メタデータ) (2021-09-13T08:31:59Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。