In-Context Reverse Classification Accuracy: Efficient Estimation of Segmentation Quality without Ground-Truth
- URL: http://arxiv.org/abs/2503.04522v1
- Date: Thu, 06 Mar 2025 15:08:34 GMT
- Title: In-Context Reverse Classification Accuracy: Efficient Estimation of Segmentation Quality without Ground-Truth
- Authors: Matias Cosarinsky, Ramiro Billot, Lucas Mansilla, Gabriel Gimenez, Nicolas Gaggión, Guanghui Fu, Enzo Ferrante,
- Abstract summary: In this paper, we introduce In-Context Reverse Classification Accuracy (In-Context RCA), a novel framework for automatically estimating segmentation quality.<n>Our approach enables efficient quality estimation with minimal reference data.
- Score: 3.592919051221766
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Assessing the quality of automatic image segmentation is crucial in clinical practice, but often very challenging due to the limited availability of ground truth annotations. In this paper, we introduce In-Context Reverse Classification Accuracy (In-Context RCA), a novel framework for automatically estimating segmentation quality in the absence of ground-truth annotations. By leveraging recent in-context learning segmentation models and incorporating retrieval-augmentation techniques to select the most relevant reference images, our approach enables efficient quality estimation with minimal reference data. Validated across diverse medical imaging modalities, our method demonstrates robust performance and computational efficiency, offering a promising solution for automated quality control in clinical workflows, where fast and reliable segmentation assessment is essential. The code is available at https://github.com/mcosarinsky/In-Context-RCA.
Related papers
- Pitfalls of topology-aware image segmentation [81.19923502845441]
We identify critical pitfalls in model evaluation that include inadequate connectivity choices, overlooked topological artifacts, and inappropriate use of evaluation metrics.<n>We propose a set of actionable recommendations to establish fair and robust evaluation standards for topology-aware medical image segmentation methods.
arXiv Detail & Related papers (2024-12-19T08:11:42Z) - Mind the Context: Attention-Guided Weak-to-Strong Consistency for Enhanced Semi-Supervised Medical Image Segmentation [14.67636369741001]
This paper introduces a semi-supervised learning framework named Attention-Guided weak-to-strong Consistency Match (AIGCMatch)
The AIGCMatch framework incorporates attention-guided perturbation strategies at both the image and feature levels to achieve weak-to-strong consistency regularization.
Our method achieved a 90.4% Dice score in the 7-case scenario on the ACDC dataset, surpassing the state-of-the-art methods and demonstrating its potential and efficacy in clinical settings.
arXiv Detail & Related papers (2024-10-16T10:04:22Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Class Activation Map-based Weakly supervised Hemorrhage Segmentation
using Resnet-LSTM in Non-Contrast Computed Tomography images [0.06269281581001895]
Intracranial hemorrhages (ICH) are routinely diagnosed using non-contrast CT (NCCT) for severity assessment.
Deep learning (DL)-based methods have shown great potential, however, training them requires a huge amount of manually annotated lesion-level labels.
We propose a novel weakly supervised DL method for ICH segmentation on NCCT scans, using image-level binary classification labels.
arXiv Detail & Related papers (2023-09-28T17:32:19Z) - FUSQA: Fetal Ultrasound Segmentation Quality Assessment [1.0819408603463427]
We propose a simplified Fetal Ultrasound Quality Assessment (FUSQA) model to tackle the segmentation quality assessment.
We formulate the segmentation quality assessment process as an automated classification task to distinguish between good and poor-quality segmentation masks for more accurate gestational age estimation.
arXiv Detail & Related papers (2023-03-08T07:45:06Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
We present an analysis of state-of-the-art automatic quality control (QC) approaches to estimate the certainty of their outputs.
We validated the most promising approaches on a brain image segmentation task identifying white matter hyperintensities (WMH) in magnetic resonance imaging data.
arXiv Detail & Related papers (2021-12-06T16:30:43Z) - Interactive Medical Image Segmentation with Self-Adaptive Confidence
Calibration [10.297081695050457]
This paper proposes an interactive segmentation framework, called interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA)
The evaluation is established through a novel action-based confidence network, and the corrective actions are obtained from MARL.
Experimental results on various medical image datasets have shown the significant performance of the proposed algorithm.
arXiv Detail & Related papers (2021-11-15T12:38:56Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.