Pitfalls of topology-aware image segmentation
- URL: http://arxiv.org/abs/2412.14619v1
- Date: Thu, 19 Dec 2024 08:11:42 GMT
- Title: Pitfalls of topology-aware image segmentation
- Authors: Alexander H. Berger, Laurin Lux, Alexander Weers, Martin Menten, Daniel Rueckert, Johannes C. Paetzold,
- Abstract summary: We identify critical pitfalls in model evaluation that include inadequate connectivity choices, overlooked topological artifacts, and inappropriate use of evaluation metrics.
We propose a set of actionable recommendations to establish fair and robust evaluation standards for topology-aware medical image segmentation methods.
- Score: 81.19923502845441
- License:
- Abstract: Topological correctness, i.e., the preservation of structural integrity and specific characteristics of shape, is a fundamental requirement for medical imaging tasks, such as neuron or vessel segmentation. Despite the recent surge in topology-aware methods addressing this challenge, their real-world applicability is hindered by flawed benchmarking practices. In this paper, we identify critical pitfalls in model evaluation that include inadequate connectivity choices, overlooked topological artifacts in ground truth annotations, and inappropriate use of evaluation metrics. Through detailed empirical analysis, we uncover these issues' profound impact on the evaluation and ranking of segmentation methods. Drawing from our findings, we propose a set of actionable recommendations to establish fair and robust evaluation standards for topology-aware medical image segmentation methods.
Related papers
- The Skin Game: Revolutionizing Standards for AI Dermatology Model Comparison [0.6144680854063939]
Deep Learning approaches in dermatological image classification have shown promising results, yet the field faces significant methodological challenges that impede proper evaluation.
This paper presents a systematic analysis of current methodological practices in skin disease classification research, revealing substantial inconsistencies in data preparation, augmentation strategies, and performance reporting.
We propose comprehensive methodological recommendations for model development, evaluation, and clinical deployment, emphasizing rigorous data preparation, systematic error analysis, and specialized protocols for different image types.
arXiv Detail & Related papers (2025-02-04T17:15:36Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Virtually Objective Quantification of in vitro Wound Healing Scratch Assays with the Segment Anything Model [0.19999259391104385]
In vitro scratch assay is widely used in cell biology to assess the rate of wound closure.
In this paper, we make use of the segment anything model, a deep foundation model based on interactive point-prompts.
Results attested very low intra- and interobserver variability, even compared to manual segmentation of domain experts.
arXiv Detail & Related papers (2024-07-02T11:45:56Z) - Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
We propose a general loss function for topologically faithful multi-class segmentation.
We project the N-class segmentation problem to N single-class segmentation tasks.
Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
arXiv Detail & Related papers (2024-03-16T19:11:57Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
We show how to adapt attribution robustness estimation methods to a given domain, so as to take into account domain-specific plausibility.
Next, we provide two methods, adversarial training and FAR training, to mitigate the brittleness characterized by DARE.
Finally, we empirically validate our methods with extensive experiments on three established biomedical benchmarks.
arXiv Detail & Related papers (2023-07-05T08:11:40Z) - Topologically Regularized Data Embeddings [15.001598256750619]
We introduce a generic approach based on algebraic topology to incorporate topological prior knowledge into low-dimensional embeddings.
We show that jointly optimizing an embedding loss with such a topological loss function as a regularizer yields embeddings that reflect not only local proximities but also the desired topological structure.
We empirically evaluate the proposed approach on computational efficiency, robustness, and versatility in combination with linear and non-linear dimensionality reduction and graph embedding methods.
arXiv Detail & Related papers (2023-01-09T13:49:47Z) - Metrics reloaded: Recommendations for image analysis validation [59.60445111432934]
Metrics Reloaded is a comprehensive framework guiding researchers in the problem-aware selection of metrics.
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint.
Based on the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics.
arXiv Detail & Related papers (2022-06-03T15:56:51Z) - Topological Similarity Index and Loss Function for Blood Vessel
Segmentation [0.0]
We propose a similarity index which captures the consistency of the predicted segmentations having as reference the ground truth.
We also design a novel loss function based on the morphological closing operator and show how it allows to learn deep neural network models which produce more topologically coherent masks.
arXiv Detail & Related papers (2021-07-30T10:24:47Z) - Common Limitations of Image Processing Metrics: A Picture Story [58.83274952067888]
This document focuses on biomedical image analysis problems that can be phrased as image-level classification, semantic segmentation, instance segmentation, or object detection task.
The current version is based on a Delphi process on metrics conducted by an international consortium of image analysis experts from more than 60 institutions worldwide.
arXiv Detail & Related papers (2021-04-12T17:03:42Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.