Gradient-descent methods for fast quantum state tomography
- URL: http://arxiv.org/abs/2503.04526v1
- Date: Thu, 06 Mar 2025 15:13:45 GMT
- Title: Gradient-descent methods for fast quantum state tomography
- Authors: Akshay Gaikwad, Manuel Sebastian Torres, Shahnawaz Ahmed, Anton Frisk Kockum,
- Abstract summary: We introduce gradient-descent (GD) algorithms for the post-processing step of quantum state tomography (QST)<n>We use various density-matrix parameterizations: Cholesky decomposition, Stiefel manifold, and projective normalization.<n>We find that rank-controlled ansatzes in our mini-batch GD-QST algorithms effectively handle noisy and data sets.
- Score: 0.24999074238880484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state tomography (QST) is a widely employed technique for characterizing the state of a quantum system. However, it is plagued by two fundamental challenges: computational and experimental complexity grows exponentially with the number of qubits, rendering experimental implementation and data post-processing arduous even for moderately sized systems. Here, we introduce gradient-descent (GD) algorithms for the post-processing step of QST in discrete- and continuous-variable systems. To ensure physically valid state reconstruction at each iteration step of the algorithm, we use various density-matrix parameterizations: Cholesky decomposition, Stiefel manifold, and projective normalization. These parameterizations have the added benefit of enabling a rank-controlled ansatz, which simplifies reconstruction when there is prior information about the system. We benchmark the performance of our GD-QST techniques against state-of-the-art methods, including constrained convex optimization, conditional generative adversarial networks, and iterative maximum likelihood estimation. Our comparison focuses on time complexity, iteration counts, data requirements, state rank, and robustness against noise. We find that rank-controlled ansatzes in our stochastic mini-batch GD-QST algorithms effectively handle noisy and incomplete data sets, yielding significantly higher reconstruction fidelity than other methods. Simulations achieving full-rank seven-qubit QST in under three minutes on a standard laptop, with 18 GB of RAM and no dedicated GPU, highlight that GD-QST is computationally more efficient and outperforms other techniques in most scenarios, offering a promising avenue for characterizing noisy intermediate-scale quantum devices. Our Python code for GD-QST algorithms is publicly available at https://github.com/mstorresh/GD-QST.
Related papers
- An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
We propose an algorithm that detects whether a given quantum state can be factored into substates.
The simplification is done by eliminating controls of quantum multiplexers.
Considering efficiency in terms of depth and number of CNOT gates, our method is competitive with the methods in the literature.
arXiv Detail & Related papers (2024-09-09T13:53:02Z) - Digitized Counterdiabatic Quantum Algorithms for Logistics Scheduling [33.04597339860113]
We propose digitized counterdiabatic quantum optimization (DCQO)algorithms for two scheduling problems.
For the job-shop scheduling problem, we aim at finding the optimal schedule for a robot executing a number of tasks under specific constraints.
For the traveling salesperson problem, the goal is to find the path that covers all cities and is associated with the shortest traveling distance.
arXiv Detail & Related papers (2024-05-24T16:53:30Z) - Classical Post-processing for Unitary Block Optimization Scheme to Reduce the Effect of Noise on Optimization of Variational Quantum Eigensolvers [0.0]
Variational Quantum Eigensolvers (VQE) are a promising approach for finding the classically intractable ground state of a Hamiltonian.
Here we develop two classical post-processing techniques which improve UBOS especially when measurements have large noise.
arXiv Detail & Related papers (2024-04-29T18:11:53Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs.
USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables.
arXiv Detail & Related papers (2023-12-19T02:27:22Z) - Quick Adaptive Ternary Segmentation: An Efficient Decoding Procedure For
Hidden Markov Models [70.26374282390401]
Decoding the original signal (i.e., hidden chain) from the noisy observations is one of the main goals in nearly all HMM based data analyses.
We present Quick Adaptive Ternary (QATS), a divide-and-conquer procedure which decodes the hidden sequence in polylogarithmic computational complexity.
arXiv Detail & Related papers (2023-05-29T19:37:48Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser
circuit ans\"atze [0.0]
We introduce an algorithm called TETRIS-ADAPT-VQE, which iteratively builds up variational ans"atze a few operators at a time.
It results in denser but significantly shallower circuits, without increasing the number of CNOT gates or variational parameters.
These improvements bring us closer to the goal of demonstrating a practical quantum advantage on quantum hardware.
arXiv Detail & Related papers (2022-09-21T18:00:02Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.