TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser
circuit ans\"atze
- URL: http://arxiv.org/abs/2209.10562v1
- Date: Wed, 21 Sep 2022 18:00:02 GMT
- Title: TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser
circuit ans\"atze
- Authors: Panagiotis G. Anastasiou, Yanzhu Chen, Nicholas J. Mayhall, Edwin
Barnes, Sophia E. Economou
- Abstract summary: We introduce an algorithm called TETRIS-ADAPT-VQE, which iteratively builds up variational ans"atze a few operators at a time.
It results in denser but significantly shallower circuits, without increasing the number of CNOT gates or variational parameters.
These improvements bring us closer to the goal of demonstrating a practical quantum advantage on quantum hardware.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive quantum variational algorithms are particularly promising for
simulating strongly correlated systems on near-term quantum hardware, but they
are not yet viable due, in large part, to the severe coherence time limitations
on current devices. In this work, we introduce an algorithm called
TETRIS-ADAPT-VQE, which iteratively builds up variational ans\"atze a few
operators at a time in a way dictated by the problem being simulated. This
algorithm is a modified version of the ADAPT-VQE algorithm in which the
one-operator-at-a-time rule is lifted to allow for the addition of multiple
operators with disjoint supports in each iteration. TETRIS-ADAPT-VQE results in
denser but significantly shallower circuits, without increasing the number of
CNOT gates or variational parameters. Its advantage over the original algorithm
in terms of circuit depths increases with the system size. Moreover, the
expensive step of measuring the energy gradient with respect to each candidate
unitary at each iteration is performed only a fraction of the time compared to
ADAPT-VQE. These improvements bring us closer to the goal of demonstrating a
practical quantum advantage on quantum hardware.
Related papers
- Adaptive variational quantum dynamics simulations with compressed circuits and fewer measurements [4.2643127089535104]
We show an improved version of the adaptive variational quantum dynamics simulation (AVQDS) method, which we call AVQDS(T)
The algorithm adaptively adds layers of disjoint unitary gates to the ansatz circuit so as to keep the McLachlan distance, a measure of the accuracy of the variational dynamics, below a fixed threshold.
We also show a method based on eigenvalue truncation to solve the linear equations of motion for the variational parameters with enhanced noise resilience.
arXiv Detail & Related papers (2024-08-13T02:56:43Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Variational determination of arbitrarily many eigenpairs in one quantum
circuit [8.118991737495524]
A variational quantum eigensolver (VQE) was first introduced for computing ground states.
We propose a new algorithm to determine many low energy eigenstates simultaneously.
Our algorithm reduces significantly the complexity of circuits and the readout errors.
arXiv Detail & Related papers (2022-06-22T13:01:37Z) - Robust resource-efficient quantum variational ansatz through
evolutionary algorithm [0.46180371154032895]
Vari quantum algorithms (VQAsational) are promising methods to demonstrate quantum advantage on near-term devices.
We show that a fixed VQA circuit design, such as the widely-used hardware efficient ansatz, is not necessarily robust against imperfections.
We propose a genome-length-adjustable evolutionary algorithm to design a robust VQA circuit that is optimized over variations of both circuit ansatz and gate parameters.
arXiv Detail & Related papers (2022-02-28T12:14:11Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.