論文の概要: SOLAR: Scalable Optimization of Large-scale Architecture for Reasoning
- arxiv url: http://arxiv.org/abs/2503.04530v2
- Date: Wed, 02 Apr 2025 04:51:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:08.123391
- Title: SOLAR: Scalable Optimization of Large-scale Architecture for Reasoning
- Title(参考訳): SOLAR: 推論のための大規模アーキテクチャのスケーラブルな最適化
- Authors: Chen Li, Yinyi Luo, Anudeep Bolimera, Uzair Ahmed, Shri Kiran Srinivasan, Hrishikesh Gokhale, Marios Savvides,
- Abstract要約: 我々は,CoT(Chain-of-Thought),ToT(Tree-of-Thought),GoT(Graph-of-Thought)トポロジを動的に最適化し,精度と効率を向上させるフレームワークであるSOLARを提案する。
また,各課題にポストトレーニングと推論スケーリングを適応的に組み合わせたカリキュラムベースアプローチであるTopological-Scalingを提案する。
- 参考スコア(独自算出の注目度): 14.416947029089332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models excel in reasoning yet often rely on Chain-of-Thought prompts, limiting performance on tasks demanding more nuanced topological structures. We present SOLAR (Scalable Optimization of Large-scale Architecture for Reasoning), a framework that dynamically optimizes Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT) topologies to boost accuracy and efficiency. Our Topological-Annotation-Generation (TAG) system automates dataset creation, annotation, and difficulty segmentation, leading to stronger post training and test-time performance. We also propose Topological-Scaling, a curriculum-learning-based approach that adaptively combines post training and inference scaling to each task. On MATH and GSM8K, SOLAR delivers notable gains: +5% accuracy with Topological Tuning, +9% with Topological Rewarding, and +10.02% with Hybrid Scaling, while reducing response length by over 5%, lowering inference latency. To further enhance efficiency, we introduce a multi-task Topological Reward Model (M-TRM) that selects both the optimal reasoning topology and final answer in a single pass, eliminating multiple single-task TRMs. Remarkably, M-TRM also surpasses all single-task TRMs, improving accuracy by +10% and rank correlation by +9%. Overall, SOLAR establishes a new benchmark for scalable, high-precision LLM reasoning and introduces a fully automated, dynamic topology competition mechanism.
- Abstract(参考訳): 大きな言語モデルは推論において優れているが、しばしばChain-of-Thoughtプロンプトに依存し、よりニュアンスなトポロジ構造を必要とするタスクのパフォーマンスを制限する。
SOLAR(Scalable Optimization of Large-scale Architecture for Reasoning)は、CoT(Chain-of-Thought)、ToT(Tree-of-Thought)、GoT(Graph-of-Thought)のトポロジを動的に最適化し、精度と効率を向上させるフレームワークである。
我々のTopological-Annotation-Generation(TAG)システムはデータセット作成、アノテーション、難易度セグメンテーションを自動化し、ポストトレーニングとテストタイムのパフォーマンスが向上する。
また,各課題にポストトレーニングと推論スケーリングを適応的に組み合わせたカリキュラムベースアプローチであるTopological-Scalingを提案する。
MATHとGSM8Kでは、SOLARは、トポロジカルチューニングによる+5%の精度、トポロジカルリワードによる+9%、ハイブリッドスケーリングによる+10.02%、応答長を5%以上削減し、推論遅延を低減している。
効率をさらに高めるため,マルチタスク・トポロジカル・リワード・モデル (M-TRM) を導入する。
注目すべきは、M-TRMは全シングルタスクのRMMを超え、精度を+10%向上し、ランク相関を+9%向上させることである。
全体として、SOLARはスケーラブルで高精度なLSM推論のための新しいベンチマークを確立し、完全に自動化された動的トポロジー競合機構を導入している。
関連論文リスト
- Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets [6.001837672951086]
モンテカルロ木探索を用いたプロセス・リワード・モデル(PRM)を提案する。
次に、生成フローネットワーク(GFlowNets)を推論ステップレベルで運用するように適応します。
経験的評価は、挑戦的な数学的ベンチマークにおいて、精度と解の多様性の両方が強く改善されていることを示している。
論文 参考訳(メタデータ) (2025-04-28T16:56:41Z) - Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning [66.43194385702297]
大規模言語モデル(LLM)は、特に強化学習(RL)を通じて強化された場合、強力な推論能力を示している。
NEMOTRON-CROSSTHINKは、多領域コーパスを体系的に組み込んだフレームワークであり、合成および実世界の問合せ対を含む。
論文 参考訳(メタデータ) (2025-04-15T21:37:13Z) - Inference-Time Scaling for Generalist Reward Modeling [25.62000059973935]
強化学習(RL)は大規模言語モデル(LLM)のポストトレーニングにおいて広く採用されている。
RLの主な課題は、検証可能な質問や人工ルールを超えて、様々な領域のLLMに対して正確な報酬信号を得ることである。
本研究では,一般問合せに対する推論計算により,報酬モデルを改善する方法について検討する。
論文 参考訳(メタデータ) (2025-04-03T11:19:49Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
CoT推論は大規模言語モデル(LLM)の多段階推論能力を高める
しかし、ほとんどのモデルやタスクでは、CoT長の増加は一貫して推論精度の向上につながりますか?
本稿では, 推論ステップの数が増加するにつれて, 性能は向上するが, 最終的には低下する,というニュアンスな関係を観察する。
論文 参考訳(メタデータ) (2025-02-11T05:28:59Z) - Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective [90.86370957353911]
CoR(Chain-of-Reasoning)は、複数の推論パラダイムを統合する新しい統合フレームワークである。
CoRは異なる推論パラダイムを用いて複数の潜在的な答えを生成し、それらをコヒーレントな最終解へと合成する。
実験の結果,CoR-Math-7Bは現在のSOTAモデルより有意に優れていた。
論文 参考訳(メタデータ) (2025-01-19T16:53:26Z) - Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
既存の車両軌道予測モデルは、一般化可能性、予測の不確実性、複雑な相互作用を扱う。
本研究では,(1)自己拡張(SD)とマスドレコンストラクション(MR)による二重レベル表現学習,グローバルコンテキストと細部の詳細の収集,(2)レジスタベースのクエリと事前学習の強化,クラスタリングと抑圧の必要性の排除,(3)微調整中の適応型プロンプトチューニング,メインアーキテクチャの凍結,および少数のプロンプトの最適化といった,新たなトラジェクタ予測フレームワークであるPerceiverを提案する。
論文 参考訳(メタデータ) (2025-01-08T20:11:09Z) - The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit [46.37267466656765]
本稿では,Retrieval-Augmented Generation(RAG)と革新的なマルチヘッドアーリーエグジットアーキテクチャを組み合わせた最適化フレームワークを提案する。
我々の実験は、信頼性の高いレコメンデーション配信に必要な精度を犠牲にすることなく、このアーキテクチャがいかに効果的に時間を削減するかを実証している。
論文 参考訳(メタデータ) (2025-01-04T03:26:46Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Compressing Large Language Models with Automated Sub-Network Search [41.452512557226335]
我々は、下流タスク性能を改善しつつ、モデルサイズの削減を図るため、大規模言語モデルに対するモデル圧縮を検討する。
我々はこれを、構造的コンポーネントを自動生成するニューラルネットワーク探索問題と表現する。
本手法は,11種類のダウンストリームタスクに対して平均9.85%の改善を実現し,デバイス上でのレイテンシを最大22%改善する。
論文 参考訳(メタデータ) (2024-10-09T02:14:39Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - CascadER: Cross-Modal Cascading for Knowledge Graph Link Prediction [22.96768147978534]
本稿では,効率を向上しつつ,完全アンサンブルのランキング精度を維持するための階層型ランキングアーキテクチャCascaderを提案する。
CascadER は LM を用いて、より効率的な KGE の出力を再現し、KGE の精度向上を最大化しつつ、LM を最小限に呼び出すための適応的なサブセット選択方式に依存している。
実験により, モデル間の多様性と個々のモデルの信頼性信号の保存がカスケーダの有効性を説明するのに有効であることがわかった。
論文 参考訳(メタデータ) (2022-05-16T22:55:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。