Omnidirectional Multi-Object Tracking
- URL: http://arxiv.org/abs/2503.04565v2
- Date: Sun, 23 Mar 2025 11:58:13 GMT
- Title: Omnidirectional Multi-Object Tracking
- Authors: Kai Luo, Hao Shi, Sheng Wu, Fei Teng, Mengfei Duan, Chang Huang, Yuhang Wang, Kaiwei Wang, Kailun Yang,
- Abstract summary: Panoramic imagery offers comprehensive information to support Multi-Object Tracking (MOT)<n>Most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings.<n>We propose OmniTrack, an omni MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions.
- Score: 27.858084330925372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in panoramic field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as panoramic fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The established dataset and source code are available at https://github.com/xifen523/OmniTrack.
Related papers
- MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving [10.399817864597347]
This paper introduces MCTrack, a new 3D multi-object tracking method that achieves state-of-the-art (SOTA) performance across KITTI, nuScenes, and datasets.
arXiv Detail & Related papers (2024-09-23T11:26:01Z) - RaTrack: Moving Object Detection and Tracking with 4D Radar Point Cloud [10.593320435411714]
We introduce RaTrack, an innovative solution tailored for radar-based tracking.
Our method focuses on motion segmentation and clustering, enriched by a motion estimation module.
RaTrack showcases superior tracking precision of moving objects, largely surpassing the performance of the state of the art.
arXiv Detail & Related papers (2023-09-18T13:02:29Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
3D single object tracking in LiDAR point clouds (LiDAR SOT) plays a crucial role in autonomous driving.
Current approaches all follow the Siamese paradigm based on appearance matching.
We introduce a motion-centric paradigm to handle LiDAR SOT from a new perspective.
arXiv Detail & Related papers (2023-03-21T17:28:44Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
We introduce a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians.
Our DIVOTrack has fifteen distinct scenarios and 953 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available.
Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT.
arXiv Detail & Related papers (2023-02-15T14:10:42Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3D single object tracking plays an essential role in many applications, such as autonomous driving.
We propose CXTrack, a novel transformer-based network for 3D object tracking.
We show that CXTrack achieves state-of-the-art tracking performance while running at 29 FPS.
arXiv Detail & Related papers (2022-11-12T11:29:01Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera
Multi-Object Tracking [42.87953709286856]
Multi-Camera Multi-Object Tracking is currently drawing attention in the computer vision field due to its superior performance in real-world applications.
We propose a mathematically elegant multi-camera multiple object tracking approach based on a spatial-temporal lifted multicut formulation.
arXiv Detail & Related papers (2021-11-23T14:09:47Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z) - Tracking Objects as Points [83.9217787335878]
We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art.
Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame.
CenterTrack is simple, online (no peeking into the future), and real-time.
arXiv Detail & Related papers (2020-04-02T17:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.