論文の概要: Generating Millions Of Lean Theorems With Proofs By Exploring State Transition Graphs
- arxiv url: http://arxiv.org/abs/2503.04772v1
- Date: Sun, 16 Feb 2025 06:20:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 09:47:30.577510
- Title: Generating Millions Of Lean Theorems With Proofs By Exploring State Transition Graphs
- Title(参考訳): ステート・トランジション・グラフを探索して何百万ものリーン理論を証明
- Authors: David Yin, Jing Gao,
- Abstract要約: 我々はLeanNavigatorを開発した。これはリーンの定理と証明の大規模なデータセットを生成する新しい方法だ。
我々は10億のトークンを合計470万の定理で生成し、以前のデータセットを桁違いに上回った。
この広範なデータセットを使用して、我々は、定理証明タスクにおいて最先端のReProverモデルより優れたAIモデルを訓練した。
- 参考スコア(独自算出の注目度): 6.65877320351217
- License:
- Abstract: Large Language Models (LLMs) have demonstrated significant potential in generating mathematical proofs. However, a persistent challenge is that LLMs occasionally make mistakes, while even a minor mistake can invalidate an entire proof. Proof assistants like Lean offer a great remedy. They are designed for verifying each step of a proof in a formal language, and in recent years researchers have created AI models to generate proofs in their languages. However, the scarcity of large-scale datasets of Lean proofs restrict the performance of such Automated Theorem Proving (ATP) models. We developed LeanNavigator, a novel method for generating a large-scale dataset of Lean theorems and proofs by finding new ways to prove existing Lean theorems. By leveraging an interactive Lean client and an efficient method for proof step generation, LeanNavigator efficiently produces new theorems with corresponding proofs. Applying this approach to Mathlib4, we generated 4.7 million theorems totaling 1 billion tokens, surpassing previous datasets by more than an order of magnitude. Using this extensive dataset, we trained an AI model that outperforms the state-of-the-art ReProver model in theorem-proving tasks. These results confirm our hypothesis and demonstrate the critical role of large datasets in improving the performance of automated theorem provers.
- Abstract(参考訳): LLM(Large Language Models)は、数学的な証明を生成する大きな可能性を証明している。
しかし、LLMが時折誤りを犯すのに対して、小さな誤りであっても証明全体を無効にできるという、永続的な課題がある。
Leanのような証明アシスタントは、素晴らしい治療を提供します。
それらは形式言語における証明の各ステップを検証するために設計されており、近年、研究者は言語で証明を生成するAIモデルを作成している。
しかし、リーン証明の大規模なデータセットの不足は、このような自動定理証明(ATP)モデルの性能を制限している。
我々は、リーンの定理と証明の大規模なデータセットを生成する新しい方法であるLeanNavigatorを開発した。
LeanNavigatorは、インタラクティブなLeanクライアントと効率的なステップ生成方法を活用することで、対応する証明で新しい定理を効率的に生成します。
このアプローチをMathlib4に適用し、合計10億のトークンからなる470万の定理を生成しました。
この広範なデータセットを使用して、我々は、定理証明タスクにおいて最先端のReProverモデルより優れたAIモデルを訓練した。
これらの結果は我々の仮説を裏付け、自動定理証明器の性能向上において大きなデータセットが重要な役割を担っていることを証明している。
関連論文リスト
- Efficient Neural Theorem Proving via Fine-grained Proof Structure Analysis [50.020850767257095]
本稿では,より優れたサンプル効率を有する定理証明手法であるProofAugを提案する。
本手法は,オープンソースのDeepseek-math-7bベースモデルとIsabelle証明アシスタントを用いて,miniF2F-testベンチマークで検証した。
論文 参考訳(メタデータ) (2025-01-30T12:37:06Z) - Proof Automation with Large Language Models [6.587933406842906]
大規模言語モデル(LLM)は、自然言語で非公式な証明を自動的に生成する可能性を示している。
本稿では,まず LLM に初期証明を生成することを促し,次に目標とする記号法を利用して低レベルの問題を反復的に修復する,新しい生成・修復手法である PALM を提案する。
その結果、PALMは他の最先端の手法よりも大幅に優れており、76.6%から180.4%の定理を証明できた。
論文 参考訳(メタデータ) (2024-09-22T00:19:27Z) - Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
証明の各ステップに先立って,非公式な思考を生成するために,言語モデルをトレーニングするフレームワークであるLean-STaRを紹介します。
Lean-STaRは、Lean定理証明環境内のminiF2F-testベンチマークで最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T01:43:07Z) - DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data [65.5290035371111]
本稿では,高校・学部レベルの数学競争問題から得られたリーン4証明データを生成する手法を提案する。
この合成データセットでDeepSeekMath 7Bモデルを微調整します。
我々のモデルは、Lean 4 Formalized International Mathematical Olympiad (FIMO)ベンチマークで148の問題を5つ証明しましたが、GPT-4は証明できませんでした。
論文 参考訳(メタデータ) (2024-05-23T09:03:42Z) - Lean Copilot: Large Language Models as Copilots for Theorem Proving in Lean [81.94024084598598]
リーンでLLM推論を実行するためのフレームワークであるLean Copilotを紹介します。
証明のステップを提案し、証明の目標を完了し、関連する前提を選択するツールを構築します。
人間を助ける場合、Lean Copilotは平均3.86で手動で入力された証明ステップを2.08ステップしか必要としない。
定理証明プロセスを自動化する場合、Lean Copilotの74.2%の証明ステップは平均85%がエソップ(40.1%)より優れている。
論文 参考訳(メタデータ) (2024-04-18T22:54:08Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARDは、高品質で多様性のある定理と証明データの均一な合成をマスターするフレームワークである。
5,866個の有効なデータポイントを持つMUSTARDSAUCEベンチマークを示す。
我々は広範囲な解析を行い、MUSTARDが検証された高品質なステップバイステップデータを生成することを示す。
論文 参考訳(メタデータ) (2024-02-14T05:57:58Z) - Enhancing Neural Theorem Proving through Data Augmentation and Dynamic
Sampling Method [1.8130068086063336]
本稿では,定理証明のための新しい動的サンプリング手法であるDS-Proverを紹介する。
単純化と書き直しの戦術を複数の前提で1つの前提で戦術に分解することで、トレーニングデータセットを強化します。
ProofNetデータセットでは14.2%の最先端パフォーマンス(Pass@1)、MiniF2Fでは29.8%のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-12-20T09:55:21Z) - LeanDojo: Theorem Proving with Retrieval-Augmented Language Models [72.54339382005732]
大規模言語モデル(LLM)は、Leanのような証明アシスタントを使って形式的な定理を証明することを約束している。
既存のメソッドは、プライベートコード、データ、計算要求のために、複製や構築が難しい。
本稿では、ツールキット、データ、モデルからなるオープンソースのリーンツールキットであるLeanDojoを紹介します。
本研究では,LLM ベースの証明器 ReProver を開発した。
論文 参考訳(メタデータ) (2023-06-27T17:05:32Z) - Baldur: Whole-Proof Generation and Repair with Large Language Models [8.100054850290507]
我々は、自然言語のテキストとコードに基づいて訓練され、証明について微調整された大きな言語モデルを使用して、一度に定理のすべての証明を生成する。
我々は、この証明生成モデルと微調整の補修モデルを組み合わせて、生成した証明を修復し、さらに証明力を増強する。
本手法をプロトタイプであるBaldurで評価し、6,336 Isabelle/HOL定理とその証明のベンチマークで評価する。
論文 参考訳(メタデータ) (2023-03-08T22:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。