論文の概要: Proof Automation with Large Language Models
- arxiv url: http://arxiv.org/abs/2409.14274v1
- Date: Sun, 22 Sep 2024 00:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 23:26:16.302054
- Title: Proof Automation with Large Language Models
- Title(参考訳): 大規模言語モデルによる証明自動化
- Authors: Minghai Lu, Benjamin Delaware, Tianyi Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語で非公式な証明を自動的に生成する可能性を示している。
本稿では,まず LLM に初期証明を生成することを促し,次に目標とする記号法を利用して低レベルの問題を反復的に修復する,新しい生成・修復手法である PALM を提案する。
その結果、PALMは他の最先端の手法よりも大幅に優れており、76.6%から180.4%の定理を証明できた。
- 参考スコア(独自算出の注目度): 6.587933406842906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactive theorem provers such as Coq are powerful tools to formally guarantee the correctness of software. However, using these tools requires significant manual effort and expertise. While Large Language Models (LLMs) have shown promise in automatically generating informal proofs in natural language, they are less effective at generating formal proofs in interactive theorem provers. In this paper, we conduct a formative study to identify common mistakes made by LLMs when asked to generate formal proofs. By analyzing 520 proof generation errors made by GPT-3.5, we found that GPT-3.5 often identified the correct high-level structure of a proof, but struggled to get the lower-level details correct. Based on this insight, we propose PALM, a novel generate-then-repair approach that first prompts an LLM to generate an initial proof and then leverages targeted symbolic methods to iteratively repair low-level problems. We evaluate PALM on a large dataset that includes more than 10K theorems. Our results show that PALM significantly outperforms other state-of-the-art approaches, successfully proving 76.6% to 180.4% more theorems. Moreover, PALM proves 1270 theorems beyond the reach of existing approaches. We also demonstrate the generalizability of PALM across different LLMs.
- Abstract(参考訳): Coqのようなインタラクティブな定理証明器は、ソフトウェアの正しさを正式に保証する強力なツールである。
しかし、これらのツールを使用するには、かなりの手作業と専門知識が必要である。
大規模言語モデル(LLM)は、自然言語の非公式な証明を自動生成する可能性を示しているが、対話型定理証明器では形式的な証明を生成できない。
本稿では,LLMが形式的証明を生成する際に犯した一般的な誤りを特定するための形式的研究を行う。
GPT-3.5による520個の証明生成誤差を解析した結果、GPT-3.5は証明の正しい高次構造をしばしば特定するが、下位レベルの詳細を正しく把握するのに苦労していることがわかった。
この知見に基づいて,まず LLM に初期証明を生成することを促し,次に目標とする記号法を利用して低レベルの問題を反復的に修復する,新しい生成・再生手法である PALM を提案する。
10K以上の定理を含む大規模データセット上でPALMを評価する。
その結果、PALMは他の最先端の手法よりも大幅に優れており、76.6%から180.4%の定理を証明できた。
さらに、PALMは既存のアプローチの範囲を超えて1270の定理を証明している。
また,異なるLLM間のPALMの一般化可能性を示す。
関連論文リスト
- Formal Theorem Proving by Rewarding LLMs to Decompose Proofs Hierarchically [29.908878832382523]
本稿では,自動検証/評価を可能にする形式言語による証明記述能力の向上に焦点をあてる。
我々は、定理に直接関係する補題がテスト時の定理証明者に与えられないより自然な設定で作業する。
我々は、モデルが定理を補題に分解し、補題を証明し、補題を用いて定理を証明することを奨励するRLベースの訓練アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-11-04T05:57:40Z) - Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
証明の各ステップに先立って,非公式な思考を生成するために,言語モデルをトレーニングするフレームワークであるLean-STaRを紹介します。
Lean-STaRは、Lean定理証明環境内のminiF2F-testベンチマークで最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T01:43:07Z) - TheoremLlama: Transforming General-Purpose LLMs into Lean4 Experts [26.98890165420689]
TheoremLlamaは、汎用的なLean4エキスパートをトレーニングするエンドツーエンドフレームワークである。
我々のフレームワークは,MiniF2F-ValidデータセットとTestデータセットでそれぞれ36.48%,33.61%の累積精度を達成した。
論文 参考訳(メタデータ) (2024-07-03T15:36:18Z) - Proving Theorems Recursively [80.42431358105482]
本稿では、定理をレベル・バイ・レベルで証明するPOETRYを提案する。
従来のステップバイステップメソッドとは異なり、POETRYは各レベルで証明のスケッチを検索する。
また,POETRYが検出した最大証明長は10~26。
論文 参考訳(メタデータ) (2024-05-23T10:35:08Z) - DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data [65.5290035371111]
本稿では,高校・学部レベルの数学競争問題から得られたリーン4証明データを生成する手法を提案する。
この合成データセットでDeepSeekMath 7Bモデルを微調整します。
我々のモデルは、Lean 4 Formalized International Mathematical Olympiad (FIMO)ベンチマークで148の問題を5つ証明しましたが、GPT-4は証明できませんでした。
論文 参考訳(メタデータ) (2024-05-23T09:03:42Z) - Towards Large Language Models as Copilots for Theorem Proving in Lean [81.94024084598598]
大規模な言語モデルでリーン推論を実行するためのフレームワークであるLean Copilotを紹介します。
証明手順を提案し、中間的な証明目標を完了し、関連する前提を選択するためのツールを構築します。
実験により, 提案手法の有効性を実証し, 提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-18T22:54:08Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARDは、高品質で多様性のある定理と証明データの均一な合成をマスターするフレームワークである。
5,866個の有効なデータポイントを持つMUSTARDSAUCEベンチマークを示す。
我々は広範囲な解析を行い、MUSTARDが検証された高品質なステップバイステップデータを生成することを示す。
論文 参考訳(メタデータ) (2024-02-14T05:57:58Z) - Generating Natural Language Proofs with Verifier-Guided Search [74.9614610172561]
NLProofS (Natural Language Proof Search) を提案する。
NLProofSは仮説に基づいて関連するステップを生成することを学習する。
EntailmentBank と RuleTaker の最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-25T02:22:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。