Sentence-level Reward Model can Generalize Better for Aligning LLM from Human Preference
- URL: http://arxiv.org/abs/2503.04793v1
- Date: Sat, 01 Mar 2025 14:11:04 GMT
- Title: Sentence-level Reward Model can Generalize Better for Aligning LLM from Human Preference
- Authors: Wenjie Qiu, Yi-Chen Li, Xuqin Zhang, Tianyi Zhang, Yihang Zhang, Zongzhang Zhang, Yang Yu,
- Abstract summary: We propose assigning scores to every sentence, introducing an intermediate-grained reward model.<n>A novel attention mechanism is introduced to aggregate the scores of all sentences into a response-level score.<n>Our method outperforms the response-level reward model by 2.7% on RewardBench.
- Score: 27.205035058481553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning reward models from human preference datasets and subsequently optimizing language models via reinforcement learning has emerged as a fundamental paradigm for aligning LLMs with human preferences. The performance of the reward model plays a crucial role in the effectiveness of alignment. Previous reward models operate at a coarse-grained level, requiring the generation of a complete response to obtain a reward value. The sparse reward may present challenges for downstream reinforcement learning. While recent efforts have attempted to learn token-level reward models, the lack of explicit semantic information makes it difficult to model the credit of every individual token. In this paper, we propose assigning scores to every sentence, introducing an intermediate-grained reward model. By segmenting the complete response into sentences and applying differential operations to reward output at the start and end positions of each sentence, we can effectively model the rewards of sentences. Moreover, a novel attention mechanism is introduced to aggregate the scores of all sentences into a response-level score, which allows it to be trained using the Bradley-Terry model. On common benchmarks, our method outperforms the response-level reward model by 2.7% on RewardBench (for reward modeling evaluation) and surpasses all baselines on AlpacaEval (for alignment evaluation).
Related papers
- Agentic Reward Modeling: Integrating Human Preferences with Verifiable Correctness Signals for Reliable Reward Systems [54.4392552373835]
Reward models (RMs) are crucial for the training and inference-time scaling up of large language models (LLMs)
We propose agentic reward modeling, a reward system that combines reward models with verifiable correctness signals to provide reliable rewards.
We conduct comprehensive experiments on existing reward model benchmarks and inference time best-of-n searches on real-world downstream tasks.
arXiv Detail & Related papers (2025-02-26T17:19:12Z) - Segmenting Text and Learning Their Rewards for Improved RLHF in Language Model [96.20350225621813]
Reinforcement learning from human feedback (RLHF) has been widely adopted to align language models (LMs) with human preference.
In this paper, we seek to get the best of both by training and utilizing a segment-level reward model.
arXiv Detail & Related papers (2025-01-06T06:17:56Z) - T-REG: Preference Optimization with Token-Level Reward Regularization [35.07328450591201]
Reinforcement learning from human feedback (RLHF) has been crucial in aligning large language models with human values.
Recent methods have attempted to address this limitation by introducing token-level rewards.
We propose token-level reward regularization (T-REG), a novel approach that leverages both sequence-level and token-level rewards for preference optimization.
arXiv Detail & Related papers (2024-12-03T18:56:07Z) - R3HF: Reward Redistribution for Enhancing Reinforcement Learning from Human Feedback [25.27230140274847]
Reinforcement learning from human feedback (RLHF) provides a paradigm for aligning large language models (LLMs) with human preferences.
This paper proposes a novel reward redistribution method called R3HF, which facilitates a more fine-grained, token-level reward allocation.
arXiv Detail & Related papers (2024-11-13T02:45:21Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
We leverage the fact that the reward model contains more information than just its scalar output.
We use these attention weights to redistribute the reward along the whole completion.
Empirically, we show that it stabilises training, accelerates the rate of learning, and, in practical cases, may lead to better local optima.
arXiv Detail & Related papers (2024-02-01T17:10:35Z) - Beyond Sparse Rewards: Enhancing Reinforcement Learning with Language
Model Critique in Text Generation [29.6763730290473]
Reinforcement learning can align language models with non-differentiable reward signals, such as human preferences.
This paper introduces a novel framework that utilizes the critique capability of Large Language Models to produce intermediate-step rewards.
arXiv Detail & Related papers (2024-01-14T22:05:11Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.