An energy-efficient learning solution for the Agile Earth Observation Satellite Scheduling Problem
- URL: http://arxiv.org/abs/2503.04803v1
- Date: Mon, 03 Mar 2025 12:01:27 GMT
- Title: An energy-efficient learning solution for the Agile Earth Observation Satellite Scheduling Problem
- Authors: Antonio M. Mercado-MartÃnez, Beatriz Soret, Antonio Jurado-Navas,
- Abstract summary: The Agile Earth Observation Satellite Scheduling Problem (AEOSSP) involves finding the subset of observation targets to be scheduled along the satellite's orbit.<n>This paper presents a Deep Reinforcement Learning (DRL) approach for addressing the AEOSSP with time-dependent profits.<n>Our results demonstrate that the proposed algorithm reduces the capture of images that fail to meet quality requirements by > 60% and consequently decreases energy waste from attitude maneuvers by up to 78%.
- Score: 5.8700233733489515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Agile Earth Observation Satellite Scheduling Problem (AEOSSP) entails finding the subset of observation targets to be scheduled along the satellite's orbit while meeting operational constraints of time, energy and memory. The problem of deciding what and when to observe is inherently complex, and becomes even more challenging when considering several issues that compromise the quality of the captured images, such as cloud occlusion, atmospheric turbulence, and image resolution. This paper presents a Deep Reinforcement Learning (DRL) approach for addressing the AEOSSP with time-dependent profits, integrating these three factors to optimize the use of energy and memory resources. The proposed method involves a dual decision-making process: selecting the sequence of targets and determining the optimal observation time for each. Our results demonstrate that the proposed algorithm reduces the capture of images that fail to meet quality requirements by > 60% and consequently decreases energy waste from attitude maneuvers by up to 78%, all while maintaining strong observation performance.
Related papers
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.<n>Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.<n>This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Earth Observation Satellite Scheduling with Graph Neural Networks [1.1684839631276702]
This paper presents a new technique for selecting and scheduling observations based on Graph Neural Networks (GNNs) and Deep Reinforcement Learning (DRL)
Our simulations show that it is able to learn on small problem instances and generalize to larger real-world instances, with very competitive performance compared to traditional approaches.
arXiv Detail & Related papers (2024-08-27T13:10:26Z) - Multi-strip observation scheduling problem for ac-tive-imaging agile
earth observation satellites [0.0]
We investigate the multi-strip observation scheduling problem for an active-image agile earth observation satellite (MOSP)
A bi-objective optimization model is presented along with an adaptive bi-objective memetic algorithm which integrates the combined power of an adaptive large neighborhood search algorithm (ALNS) and a nondominated sorting genetic algorithm II (NSGA-II)
Our model is more versatile than existing models and provide enhanced capabilities in applied problem solving.
arXiv Detail & Related papers (2022-07-04T08:35:57Z) - Three multi-objective memtic algorithms for observation scheduling
problem of active-imaging AEOS [0.0]
We call the novel problem as observation scheduling problem for AEOS with variable image duration (OSWVID)
A cumulative image quality and a detailed energy consumption is proposed to build OSWVID as a bi-objective optimization model.
Three multi-objective memetic algorithms, PD+NSGA-II, LANSGA-II and ALNS+NSGA-II, are then designed to solve OSWVID.
arXiv Detail & Related papers (2022-07-04T08:18:54Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z) - Robust and Precise Facial Landmark Detection by Self-Calibrated Pose
Attention Network [73.56802915291917]
We propose a semi-supervised framework to achieve more robust and precise facial landmark detection.
A Boundary-Aware Landmark Intensity (BALI) field is proposed to model more effective facial shape constraints.
A Self-Calibrated Pose Attention (SCPA) model is designed to provide a self-learned objective function that enforces intermediate supervision.
arXiv Detail & Related papers (2021-12-23T02:51:08Z) - A Maximum Independent Set Method for Scheduling Earth Observing
Satellite Constellations [41.013477422930755]
This paper introduces a new approach for solving the satellite scheduling problem by generating an infeasibility-based graph representation of the problem.
It is tested on a scenarios of up to 10,000 requested imaging locations for the Skysat constellation of optical satellites as well as simulated constellations of up to 24 satellites.
arXiv Detail & Related papers (2020-08-15T19:32:21Z) - Bottom-up mechanism and improved contract net protocol for the dynamic
task planning of heterogeneous Earth observation resources [61.75759893720484]
Earth observation resources are becoming increasingly indispensable in disaster relief, damage assessment and related domains.
Many unpredicted factors, such as the change of observation task requirements, to the occurring of bad weather and resource failures, may cause the scheduled observation scheme to become infeasible.
A bottom-up distributed coordinated framework together with an improved contract net are proposed to facilitate the dynamic task replanning for heterogeneous Earth observation resources.
arXiv Detail & Related papers (2020-07-13T03:51:08Z) - Simulated annealing based heuristic for multiple agile satellites
scheduling under cloud coverage uncertainty [1.100580615194563]
Agile satellites are the new generation of Earth observation satellites (EOSs) with stronger attitude maneuvering capability.
We are the first to address multiple agile EOSs scheduling problem under cloud coverage uncertainty.
An improved simulated annealing based combining a fast insertion strategy is proposed for large-scale observation missions.
arXiv Detail & Related papers (2020-03-14T16:37:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.