論文の概要: LLaVE: Large Language and Vision Embedding Models with Hardness-Weighted Contrastive Learning
- arxiv url: http://arxiv.org/abs/2503.04812v1
- Date: Tue, 04 Mar 2025 10:21:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 15:57:06.418094
- Title: LLaVE: Large Language and Vision Embedding Models with Hardness-Weighted Contrastive Learning
- Title(参考訳): LLaVE: ハードネス重み付きコントラスト学習を用いた大規模言語と視覚埋め込みモデル
- Authors: Zhibin Lan, Liqiang Niu, Fandong Meng, Jie Zhou, Jinsong Su,
- Abstract要約: 負対に対する埋め込みモデルの表現学習を動的に改善するフレームワークを提案する。
LLaVEは、最先端(SOTA)のパフォーマンスを実現する強力なベースラインを確立する。
LLaVEはゼロショット方式でテキストビデオ検索タスクを一般化し、高い性能を実現する。
- 参考スコア(独自算出の注目度): 76.82159851648711
- License:
- Abstract: Universal multimodal embedding models play a critical role in tasks such as interleaved image-text retrieval, multimodal RAG, and multimodal clustering. However, our empirical results indicate that existing LMM-based embedding models trained with the standard InfoNCE loss exhibit a high degree of overlap in similarity distribution between positive and negative pairs, making it challenging to distinguish hard negative pairs effectively. To deal with this issue, we propose a simple yet effective framework that dynamically improves the embedding model's representation learning for negative pairs based on their discriminative difficulty. Within this framework, we train a series of models, named LLaVE, and evaluate them on the MMEB benchmark, which covers 4 meta-tasks and 36 datasets. Experimental results show that LLaVE establishes stronger baselines that achieve state-of-the-art (SOTA) performance while demonstrating strong scalability and efficiency. Specifically, LLaVE-2B surpasses the previous SOTA 7B models, while LLaVE-7B achieves a further performance improvement of 6.2 points. Although LLaVE is trained on image-text data, it can generalize to text-video retrieval tasks in a zero-shot manner and achieve strong performance, demonstrating its remarkable potential for transfer to other embedding tasks.
- Abstract(参考訳): ユニバーサルマルチモーダル埋め込みモデルは、インターリーブ画像テキスト検索、マルチモーダルRAG、マルチモーダルクラスタリングといったタスクにおいて重要な役割を果たす。
しかし,本実験の結果から,従来のLMMベースの埋め込みモデルは正対と負対の類似度分布に高い重なり合いを示し,強負対を効果的に識別することが困難であることが示唆された。
この問題に対処するため,本研究では,その識別難易度に基づいて,負対に対する埋め込みモデルの表現学習を動的に改善する,シンプルで効果的なフレームワークを提案する。
このフレームワーク内では、LLaVEという名前の一連のモデルをトレーニングし、4つのメタタスクと36のデータセットをカバーするMMEBベンチマークで評価する。
実験結果から,LLaVEは高いスケーラビリティと効率性を示しつつ,最先端(SOTA)性能を実現する強力なベースラインを確立することが示された。
具体的には、LLaVE-2Bは以前のSOTA 7Bモデルを上回っ、LLaVE-7Bは6.2ポイントのさらなる性能向上を実現している。
LLaVEは画像テキストデータに基づいて訓練されているが、ゼロショット方式でテキストビデオ検索タスクに一般化でき、高い性能を達成でき、他の埋め込みタスクへの転送の可能性を示す。
関連論文リスト
- VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
幅広い下流タスクを扱える普遍的な埋め込みを構築する可能性について検討する。
We build a series of VLM2Vec model on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split。
以上の結果から,VLM2Vecは既存のマルチモーダル埋め込みモデルよりも10%から20%の絶対的な平均的改善を実現していることがわかった。
論文 参考訳(メタデータ) (2024-10-07T16:14:05Z) - Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
大きな言語モデル(LLM)は、新しい機能を実現するために、Visual Language Models(VLM)と統合されつつある。
オブジェクト認識やシーン認識では,LLMを使わないVLMの方が,VLMよりも優れた性能が得られることを示す。
本稿では,視覚的タスクをタスクに適したモデルに効率的にルーティングする,比較的小さなLCMを含む軽量な修正法を提案する。
論文 参考訳(メタデータ) (2024-10-03T23:40:21Z) - Concept-skill Transferability-based Data Selection for Large Vision-Language Models [56.0725292404808]
視覚言語モデルを学習するための効果的でスケーラブルなデータ選択手法であるCOINCIDEを紹介する。
我々は,目標LVLMに必要な概念スキル構成を識別する小型モデルからの内部アクティベーションを用いて,トレーニングデータをクラスタ化する。
実験により、COINCIDEは8つの強いベースラインに対して、優れた性能とデータ選択効率を実現することが示された。
論文 参考訳(メタデータ) (2024-06-16T16:15:20Z) - Assessing LLMs for Zero-shot Abstractive Summarization Through the Lens of Relevance Paraphrasing [37.400757839157116]
大言語モデル(LLM)は、与えられた記事に対する抽象的な要約のゼロショット生成において最先端のパフォーマンスを達成した。
本稿では,LLMのロバスト性を測定するためのシンプルな戦略であるrelevance paraphrasingを提案する。
論文 参考訳(メタデータ) (2024-06-06T12:08:43Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
本稿では,LVLMのための簡易かつ効果的なトレーニング戦略であるMoE-Tuningを提案する。
MoE-LLaVAはMoEベースのスパースLVLMアーキテクチャであり、ルータを通じてトップkの専門家のみをユニークに活性化する。
様々な視覚的理解と物体幻覚のベンチマークにおいて,MoE-LLaVAの顕著な性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-01-29T08:13:40Z) - Mixed Distillation Helps Smaller Language Model Better Reasoning [27.934081882868902]
本稿では,大規模言語モデル (LLM) におけるプログラム・オブ・シント (PoT) とチェーン・オブ・シント (CoT) の強みを生かした混合蒸留 (MD) フレームワークを紹介する。
実験の結果, MDは, 様々なタスクにおいて, より小さなモデルのシングルパスとマルチパス推論能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-12-17T14:28:28Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
大規模言語モデルの自己改善能力は欠如しており、より小さなモデルで学ぶことは困難である。
このような自己改善能力を持つ小型モデルのトレーニングアルゴリズムであるTriPosTを導入する。
我々は,LLaMA-7bの算数および推論タスクの性能を最大7.13%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:11:04Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。