論文の概要: LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning
- arxiv url: http://arxiv.org/abs/2503.15621v1
- Date: Wed, 19 Mar 2025 18:10:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:36:12.851618
- Title: LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning
- Title(参考訳): LLaVA-MORE:視覚インストラクションチューニングのためのLLMと視覚バックボーンの比較検討
- Authors: Federico Cocchi, Nicholas Moratelli, Davide Caffagni, Sara Sarto, Lorenzo Baraldi, Marcella Cornia, Rita Cucchiara,
- Abstract要約: モデルのサイズ、アーキテクチャ、パフォーマンスのトレードオフについては、まだ未検討のままです。
本稿では,近年の言語モデルと多様な視覚的バックボーンを統合したMLLMの新しいファミリーであるLLaVA-MOREを紹介する。
公平な比較を保証するため、すべてのアーキテクチャで一貫して適用される統一的なトレーニングプロトコルを使用します。
- 参考スコア(独自算出の注目度): 39.54891426369773
- License:
- Abstract: Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の最近の進歩は、視覚バックボーンと基礎となる言語モデルの両方の重要な役割を強調している。
これまでの作業では、これらのコンポーネントを数十億のパラメータにスケーリングすることに重点を置いてきたが、モデルのサイズ、アーキテクチャ、パフォーマンスのトレードオフは未定のままである。
さらに、トレーニングデータと評価プロトコルの不整合が直接比較を妨げるため、最適な設計選択を導出することは困難である。
本稿では,近年の言語モデルと多様な視覚的バックボーンを統合したMLLMの新しいファミリーであるLLaVA-MOREを紹介する。
公平な比較を保証するため、すべてのアーキテクチャで一貫して適用される統一的なトレーニングプロトコルを使用します。
Phi-4, LLaMA-3.1, Gemma-2を含む中小LLMを系統的に検討し, モデルサイズと性能の関係について検討した。
LLMが最終的な結果に与える影響を評価するだけでなく、CLIPベースのアーキテクチャから、DINOv2、SigLIP、SigLIP2などの代替品まで、様々なビジュアルエンコーダの包括的な研究を行っている。
追加実験では、事前学習データセットにおける画像解像度とバリエーションの増加の影響について検討した。
全体として,より効果的なMLLMの設計に関する知見を提供し,直接比較を容易にし,将来のモデル開発を導く再現可能な評価フレームワークを提供する。
私たちのソースコードとトレーニングされたモデルは、https://github.com/aimagelab/LLaVA-MORE.comで公開されています。
関連論文リスト
- CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Explore In-Context Segmentation via Latent Diffusion Models [132.26274147026854]
インコンテキストセグメンテーションは、与えられた参照画像を使ってオブジェクトをセグメンテーションすることを目的としている。
既存のほとんどのアプローチでは、視覚的プロンプトと入力画像クエリの相関を構築するために、メトリックラーニングやマスク付きイメージモデリングを採用しています。
この研究は、新しい視点から問題にアプローチし、コンテキスト内セグメンテーションのための潜在拡散モデルの能力を解き放つ。
論文 参考訳(メタデータ) (2024-03-14T17:52:31Z) - An Empirical Study of Scaling Instruct-Tuned Large Multimodal Models [116.50367506746713]
LLaVAを33B,65B/70Bまでスケールアップする実験的検討を行った。
LMMのスケーリングはモデルの性能を継続的に向上し、言語機能を改善する。
この研究によって、より大規模で最先端のLMM研究がよりアクセスしやすくなることを願っている。
論文 参考訳(メタデータ) (2023-09-18T17:30:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。