Honest to a Fault: Root-Causing Fault Attacks with Pre-Silicon RISC Pipeline Characterization
- URL: http://arxiv.org/abs/2503.04846v1
- Date: Wed, 05 Mar 2025 20:08:12 GMT
- Title: Honest to a Fault: Root-Causing Fault Attacks with Pre-Silicon RISC Pipeline Characterization
- Authors: Arsalan Ali Malik, Harshvadan Mihir, Aydin Aysu,
- Abstract summary: This study aims to characterize and diagnose the impact of faults within the RISC-V instruction set and pipeline stages, while tracing fault propagation from the circuit level to the AI/ML application software.<n>This analysis resulted in discovering a novel vulnerability through controlled clock glitch parameters, specifically targeting the RISC-V decode stage.
- Score: 4.83186491286234
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fault injection attacks represent a class of threats that can compromise embedded systems across multiple layers of abstraction, such as system software, instruction set architecture (ISA), microarchitecture, and physical implementation. Early detection of these vulnerabilities and understanding their root causes along with their propagation from the physical layer to the system software is critical to secure the cyberinfrastructure. This present presents a comprehensive methodology for conducting controlled fault injection attacks at the pre-silicon level and an analysis of the underlying system for root-causing behavior. As the driving application, we use the clock glitch attacks in AI/ML applications for critical misclassification. Our study aims to characterize and diagnose the impact of faults within the RISC-V instruction set and pipeline stages, while tracing fault propagation from the circuit level to the AI/ML application software. This analysis resulted in discovering a novel vulnerability through controlled clock glitch parameters, specifically targeting the RISC-V decode stage.
Related papers
- CRAFT: Characterizing and Root-Causing Fault Injection Threats at Pre-Silicon [4.83186491286234]
This work presents a comprehensive methodology for conducting controlled fault injection attacks at the pre-silicon level.<n>As the driving application, we use the clock glitch attacks in AI/ML applications for critical misclassification.
arXiv Detail & Related papers (2025-03-05T20:17:46Z) - Enhancing Network Security Management in Water Systems using FM-based Attack Attribution [43.48086726793515]
We propose a novel model-agnostic Factorization Machines (FM)-based approach that capitalizes on water system sensor-actuator interactions to provide granular explanations and attributions for cyber attacks.<n>In multi-feature cyber attack scenarios involving intricate sensor-actuator interactions, our FM-based attack attribution method effectively ranks attack root causes, achieving approximately 20% average improvement over SHAP and LEMNA.
arXiv Detail & Related papers (2025-03-03T06:52:00Z) - Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - Static Detection of Filesystem Vulnerabilities in Android Systems [18.472695251551176]
We present PathSentinel, which overcomes the limitations of previous techniques by combining static program analysis and access control policy analysis.
By unifying program and access control policy analysis, PathSentinel identifies attack surfaces accurately and prunes many impractical attacks.
To streamline vulnerability validation, PathSentinel leverages large language models (LLMs) to generate targeted exploit code.
arXiv Detail & Related papers (2024-07-15T23:10:52Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - A Micro Architectural Events Aware Real-Time Embedded System Fault Injector [0.12187048691454236]
This paper introduces a novel fault injector designed to facilitate the monitoring, aggregation, and examination of micro-architectural events.
The methodology targets bit-flipping within the memory system, affecting CPU registers and RAM.
The outcomes of these fault injections enable a thorough analysis of the impact of soft errors and establish a robust correlation between the identified faults and the essential timing predictability demanded by SACRES.
arXiv Detail & Related papers (2024-01-16T14:41:20Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled
Driving Automation [4.820785104084241]
This paper defines the SOTIF Temporal Error and Failure Model (STEAM) as a refinement of the SOTIF cause-and-effect model.
Second, this paper proposes the Model-based SOTIF Analysis of Failures and Errors (MoSAFE) method, which allows instantiating STEAM based on system-design models.
arXiv Detail & Related papers (2023-12-15T06:34:35Z) - The Adversarial Implications of Variable-Time Inference [47.44631666803983]
We present an approach that exploits a novel side channel in which the adversary simply measures the execution time of the algorithm used to post-process the predictions of the ML model under attack.
We investigate leakage from the non-maximum suppression (NMS) algorithm, which plays a crucial role in the operation of object detectors.
We demonstrate attacks against the YOLOv3 detector, leveraging the timing leakage to successfully evade object detection using adversarial examples, and perform dataset inference.
arXiv Detail & Related papers (2023-09-05T11:53:17Z) - Learning-Based Vulnerability Analysis of Cyber-Physical Systems [10.066594071800337]
This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems.
We consider a control architecture widely used in CPS (e.g., robotics) where the low-level control is based on e.g., the extended Kalman filter (EKF) and an anomaly detector.
To facilitate analyzing the impact potential sensing attacks could have, our objective is to develop learning-enabled attack generators.
arXiv Detail & Related papers (2021-03-10T06:52:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.