Curiosity-Driven Imagination: Discovering Plan Operators and Learning Associated Policies for Open-World Adaptation
- URL: http://arxiv.org/abs/2503.04931v1
- Date: Thu, 06 Mar 2025 20:02:26 GMT
- Title: Curiosity-Driven Imagination: Discovering Plan Operators and Learning Associated Policies for Open-World Adaptation
- Authors: Pierrick Lorang, Hong Lu, Matthias Scheutz,
- Abstract summary: Adapting quickly to dynamic, uncertain environments is a major challenge in robotics.<n>Traditional Task and Motion Planning approaches struggle to cope with unforeseen changes, are data-inefficient when adapting, and do not leverage world models during learning.<n>We address this issue with a hybrid planning and learning system that integrates two models: a low level neural network based model that learns transitions and drives exploration via an Intrinsic Curiosity Module (ICM)<n>Our evaluation in a robotic manipulation domain with sequential novelty injections demonstrates that our approach converges faster and outperforms state-of-the-art hybrid methods.
- Score: 7.406934849952094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting quickly to dynamic, uncertain environments-often called "open worlds"-remains a major challenge in robotics. Traditional Task and Motion Planning (TAMP) approaches struggle to cope with unforeseen changes, are data-inefficient when adapting, and do not leverage world models during learning. We address this issue with a hybrid planning and learning system that integrates two models: a low level neural network based model that learns stochastic transitions and drives exploration via an Intrinsic Curiosity Module (ICM), and a high level symbolic planning model that captures abstract transitions using operators, enabling the agent to plan in an "imaginary" space and generate reward machines. Our evaluation in a robotic manipulation domain with sequential novelty injections demonstrates that our approach converges faster and outperforms state-of-the-art hybrid methods.
Related papers
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.
We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.
We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - AdaWorld: Learning Adaptable World Models with Latent Actions [76.50869178593733]
We propose AdaWorld, an innovative world model learning approach that enables efficient adaptation.
Key idea is to incorporate action information during the pretraining of world models.
We then develop an autoregressive world model that conditions on these latent actions.
arXiv Detail & Related papers (2025-03-24T17:58:15Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - RobotDiffuse: Motion Planning for Redundant Manipulator based on Diffusion Model [13.110235244912474]
Redundant manipulators offer enhanced kinematic performance and versatility.<n>Motion planning for these manipulators is challenging due to increased DOFs and complex, dynamic environments.<n>This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators.
arXiv Detail & Related papers (2024-12-27T07:34:54Z) - One-shot World Models Using a Transformer Trained on a Synthetic Prior [37.027893127637036]
One-Shot World Model (OSWM) is a transformer world model that is learned in an in-context learning fashion from purely synthetic data.
OSWM is able to quickly adapt to the dynamics of a simple grid world, as well as the CartPole gym and a custom control environment.
arXiv Detail & Related papers (2024-09-21T09:39:32Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Learning compositional models of robot skills for task and motion
planning [39.36562555272779]
We learn to use sensorimotor primitives to solve complex long-horizon manipulation problems.
We use state-of-the-art methods for active learning and sampling.
We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions.
arXiv Detail & Related papers (2020-06-08T20:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.