Federated Inverse Probability Treatment Weighting for Individual Treatment Effect Estimation
- URL: http://arxiv.org/abs/2503.04946v1
- Date: Thu, 06 Mar 2025 20:24:34 GMT
- Title: Federated Inverse Probability Treatment Weighting for Individual Treatment Effect Estimation
- Authors: Changchang Yin, Hong-You Chen, Wei-Lun Chao, Ping Zhang,
- Abstract summary: Individual treatment effect (ITE) estimation is a crucial problem in healthcare.<n>FED-IPTW is a novel algorithm to extend IPTW into a federated setting.
- Score: 37.02140283974264
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Individual treatment effect (ITE) estimation is to evaluate the causal effects of treatment strategies on some important outcomes, which is a crucial problem in healthcare. Most existing ITE estimation methods are designed for centralized settings. However, in real-world clinical scenarios, the raw data are usually not shareable among hospitals due to the potential privacy and security risks, which makes the methods not applicable. In this work, we study the ITE estimation task in a federated setting, which allows us to harness the decentralized data from multiple hospitals. Due to the unavoidable confounding bias in the collected data, a model directly learned from it would be inaccurate. One well-known solution is Inverse Probability Treatment Weighting (IPTW), which uses the conditional probability of treatment given the covariates to re-weight each training example. Applying IPTW in a federated setting, however, is non-trivial. We found that even with a well-estimated conditional probability, the local model training step using each hospital's data alone would still suffer from confounding bias. To address this, we propose FED-IPTW, a novel algorithm to extend IPTW into a federated setting that enforces both global (over all the data) and local (within each hospital) decorrelation between covariates and treatments. We validated our approach on the task of comparing the treatment effects of mechanical ventilation on improving survival probability for patients with breadth difficulties in the intensive care unit (ICU). We conducted experiments on both synthetic and real-world eICU datasets and the results show that FED-IPTW outperform state-of-the-art methods on all the metrics on factual prediction and ITE estimation tasks, paving the way for personalized treatment strategy design in mechanical ventilation usage.
Related papers
- Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes [13.925793826373706]
Estimating individualised treatment effect (ITE) remains a fundamental problem in causal inference.<n>Previous work in causal machine learning for ITE estimation is limited to simple settings, like single treatments and single outcomes.<n>We propose a novel and innovative hypernetwork-based approach, called emphH-Learner, to solve ITE estimation under composite treatments and composite outcomes.
arXiv Detail & Related papers (2025-02-12T10:41:21Z) - DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect
Estimation [7.060064266376701]
Causal Inference has wide applications in various areas such as E-commerce and precision medicine.
This paper proposes Deep Entire Space Cross Networks (DESCN) to model treatment effects from an end-to-end perspective.
arXiv Detail & Related papers (2022-07-19T01:25:31Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Federated Causal Inference in Heterogeneous Observational Data [13.460660554484512]
We are interested in estimating the effect of a treatment applied to individuals at multiple sites, where data is stored locally for each site.
Due to privacy constraints, individual-level data cannot be shared across sites; the sites may also have heterogeneous populations and treatment assignment mechanisms.
Motivated by these considerations, we develop federated methods to draw inference on the average treatment effects of combined data across sites.
arXiv Detail & Related papers (2021-07-25T05:55:00Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.