論文の概要: Prediction of Frozen Region Growth in Kidney Cryoablation Intervention Using a 3D Flow-Matching Model
- arxiv url: http://arxiv.org/abs/2503.04966v2
- Date: Tue, 11 Mar 2025 15:21:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 12:20:22.964885
- Title: Prediction of Frozen Region Growth in Kidney Cryoablation Intervention Using a 3D Flow-Matching Model
- Title(参考訳): 3次元フローマッチングモデルによるキドニークライオアブレーション介入における凍結領域成長の予測
- Authors: Siyeop Yoon, Yujin Oh, Matthew Tivnan, Sifan Song, Pengfei Jin, Sekeun Kim, Hyun Jin Cho, Dufan Wu, Raul Uppot, Quanzheng Li,
- Abstract要約: 本研究は,腎の凍結凝固過程における凍結領域(アイスボール)の進行を予測するための3次元フローマッチングモデルを提案する。
このモデルは、IoU(Intersection over Union)スコアが0.61、Dice係数が0.75となる。
- 参考スコア(独自算出の注目度): 9.465809201853116
- License:
- Abstract: This study presents a 3D flow-matching model designed to predict the progression of the frozen region (iceball) during kidney cryoablation. Precise intraoperative guidance is critical in cryoablation to ensure complete tumor eradication while preserving adjacent healthy tissue. However, conventional methods, typically based on physics driven or diffusion based simulations, are computationally demanding and often struggle to represent complex anatomical structures accurately. To address these limitations, our approach leverages intraoperative CT imaging to inform the model. The proposed 3D flow matching model is trained to learn a continuous deformation field that maps early-stage CT scans to future predictions. This transformation not only estimates the volumetric expansion of the iceball but also generates corresponding segmentation masks, effectively capturing spatial and morphological changes over time. Quantitative analysis highlights the model robustness, demonstrating strong agreement between predictions and ground-truth segmentations. The model achieves an Intersection over Union (IoU) score of 0.61 and a Dice coefficient of 0.75. By integrating real time CT imaging with advanced deep learning techniques, this approach has the potential to enhance intraoperative guidance in kidney cryoablation, improving procedural outcomes and advancing the field of minimally invasive surgery.
- Abstract(参考訳): 本研究は,腎の凍結凝固過程における凍結領域(アイスボール)の進行を予測するための3次元フローマッチングモデルを提案する。
正確な術中指導は、隣接する健康な組織を保存しながら、腫瘍の根絶を確実にするための凍結術において重要である。
しかし、物理駆動または拡散に基づくシミュレーションに基づく従来の手法は、計算的に要求され、しばしば複雑な解剖学的構造を正確に表現するのに苦労している。
これらの制約に対処するために,術中CT画像を用いてモデルに情報を提供する。
提案した3次元フローマッチングモデルを用いて,早期CTスキャンを将来の予測にマッピングする連続的な変形場を学習する。
この変換は、氷球の体積膨張を推定するだけでなく、対応するセグメンテーションマスクを生成し、時間とともに空間的および形態的変化を効果的に捉える。
定量的分析はモデルロバスト性を強調し、予測と地道セグメンテーションの間に強い一致を示す。
このモデルは、IoU(Intersection over Union)スコアが0.61、Dice係数が0.75となる。
リアルタイムCT画像と高度な深層学習技術を組み合わせることにより,腎凍結術の術中指導を増強し,術式の改善と低侵襲手術の進歩が期待できる。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
時間的認識拡散モデル(TADM)は,スキャン間の強度差による構造変化の分布を学習する。
トレーニング中、モデルのトレーニングプロセスを洗練するために、トレーニング済みのBrain-Age Estimator(BAE)を活用することを提案する。
我々のアプローチは、患者の結果を予測したり、患者に対する治療を改善するといった応用に役立ちます。
論文 参考訳(メタデータ) (2024-06-18T09:00:49Z) - Spatiotemporal Graph Neural Network Modelling Perfusion MRI [12.712005118761516]
Per vascular MRI (pMRI) は腫瘍について貴重な洞察を与え、腫瘍の遺伝子型を予測することを約束する。
しかし、4D pMRIに合わせた効果的なモデルはまだ不足している。
本研究は,GNNモデルを用いた4次元pMRIのモデル化の試みである。
論文 参考訳(メタデータ) (2024-06-10T16:24:46Z) - An Endoscopic Chisel: Intraoperative Imaging Carves 3D Anatomical Models [8.516340459721484]
本稿では,術前の3次元解剖モデル更新のための第1のビジョンベースアプローチを提案する。
以上の結果より, 外科的進行過程における誤りの減少が示唆された。
論文 参考訳(メタデータ) (2024-02-19T05:06:52Z) - High-risk Factor Prediction in Lung Cancer Using Thin CT Scans: An
Attention-Enhanced Graph Convolutional Network Approach [9.795111455349183]
肺がんは、特に進行期において、世界中で死因となっている。
本研究は,術前CT画像に基づいて,I期肺癌に高リスク因子が存在するか否かを分類するために,Atention-Enhanced Graph Convolutional Network (AE-GCN)モデルを提案する。
論文 参考訳(メタデータ) (2023-08-27T04:24:04Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
複雑な合成血管形状の高分解能(空間および時間)速度場を予測できるアーキテクチャを提案する。
CFDシミュレーションと比較して、速度場は平均絶対誤差0.024m/sで推定できるのに対し、実行時間は高性能クラスタでは数時間からコンシューマグラフィカル処理ユニットでは数秒に短縮される。
論文 参考訳(メタデータ) (2023-02-13T17:56:00Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
新型コロナウイルス(COVID-19)は、世界中の医療システムに悪影響を及ぼし続けている。
現段階では、新型コロナウイルスの診断と治療には、CT画像から肺感染症領域を自動的に分離することが不可欠である。
本稿では,境界案内型セマンティックラーニングネットワーク(BSNet)を提案する。
論文 参考訳(メタデータ) (2022-09-07T05:01:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。