論文の概要: Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2503.05051v1
- Date: Fri, 07 Mar 2025 00:05:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:23:12.833793
- Title: Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations
- Title(参考訳): Inlicit Neural Representation を用いた患者特異的非カルテシアンMRIの高速化
- Authors: Di Xu, Hengjie Liu, Xin Miao, Daniel O'Connor, Jessica E. Scholey, Wensha Yang, Mary Feng, Michael Ohliger, Hui Lin, Dan Ruan, Yang Yang, Ke Sheng,
- Abstract要約: 我々は,デ・ノボをアンサンプした非カルテシアンk空間再構築のための新しい生成的訓練型暗黙的ニューラル表現(k-GINR)を開発した。
k-GINRは、非常に高い加速で観測されるパフォーマンス上の優位性により、ベースラインを一貫して上回った。
- 参考スコア(独自算出の注目度): 8.781276186760962
- License:
- Abstract: The scanning time for a fully sampled MRI can be undesirably lengthy. Compressed sensing has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize on new cases. Image-domain-based deep learning methods (e.g., convolutional neural networks) emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition. In comparison, implicit neural representations can model continuous signals in the frequency domain and thus are compatible with arbitrary k-space sampling patterns. The current study develops a novel generative-adversarially trained implicit neural representations (k-GINR) for de novo undersampled non-Cartesian k-space reconstruction. k-GINR consists of two stages: 1) supervised training on an existing patient cohort; 2) self-supervised patient-specific optimization. In stage 1, the network is trained with the generative-adversarial network on diverse patients of the same anatomical region supervised by fully sampled acquisition. In stage 2, undersampled k-space data of individual patients is used to tailor the prior-embedded network for patient-specific optimization. The UCSF StarVIBE T1-weighted liver dataset was evaluated on the proposed framework. k-GINR is compared with an image-domain deep learning method, Deep Cascade CNN, and a compressed sensing method. k-GINR consistently outperformed the baselines with a larger performance advantage observed at very high accelerations (e.g., 20 times). k-GINR offers great value for direct non-Cartesian k-space reconstruction for new incoming patients across a wide range of accelerations liver anatomy.
- Abstract(参考訳): 完全にサンプリングされたMRIの走査時間は、望ましくないほど長い。
圧縮センシングは、加速スキャンにおける画像アーティファクトを最小限に抑えるために開発されたが、必要となる反復再構成は計算的に複雑であり、新しいケースを一般化することは困難である。
画像ドメインベースのディープラーニング手法(例えば畳み込みニューラルネットワーク)は、高速な代替手段として登場したが、連続的なk空間をモデル化する際の課題に直面した。
対照的に、暗黙的な神経表現は周波数領域における連続的な信号をモデル化することができ、任意のk空間サンプリングパターンと互換性がある。
本研究は、デ・ノボアンサンプドアンサンプド非カルテシアk空間再構成のための新しい生成的訓練型暗黙的神経表現(k-GINR)を開発した。
k-GINRは2つの段階から構成される。
1) 既存の患者コホートを指導する訓練
2) 自己管理型患者特異的最適化。
ステージ1では、全サンプル取得によって監督される同一の解剖学的領域の多様な患者に対して、ネットワークを生成・反転ネットワークで訓練する。
ステージ2では、患者固有の最適化のために、個別の患者k空間データをアンダーサンプリングして、プリエンベッドドネットワークを調整する。
The UCSF StarVIBE T1-weighted liver dataset on the proposed framework。
k-GINRは、画像領域深層学習法、Deep Cascade CNNおよび圧縮センシング法と比較される。
k-GINRは、非常に高い加速(例えば、20倍)で観測されるパフォーマンス上の優位性で、ベースラインを一貫して上回りました。
k-GINRは, 肝解剖学の広範囲にわたる新規来院患者に対して, 直接的非カルテス的k空間再構築に有用である。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
本稿では、これらの問題に対処するために、新しい再視覚的二重ドメイン自己教師型深層展開ネットワークを提案する。
エンド・ツー・エンドの再構築を実現するために,シャンブルとポック・プロキシ・ポイント・アルゴリズム(DUN-CP-PPA)に基づく深層展開ネットワークを設計する。
高速MRIおよびIXIデータセットを用いて行った実験により,本手法は再建性能において最先端の手法よりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2025-01-07T12:29:32Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Learning to sample in Cartesian MRI [1.2432046687586285]
患者の快適さを高め、検査コストを減らし、スループットを向上させるため、臨床環境ではスキャン時間を短縮することが重要である。
圧縮センシング(CS)とディープラーニングの最近の進歩は、アンダーサンプルデータから高品質な画像を再構成することで、MRIの高速化を可能にする。
この論文は、カルテシアンMRIの文脈におけるこのギャップに対処する2つのアプローチを探求する。
論文 参考訳(メタデータ) (2023-12-07T14:38:07Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
非カルテシアンMRIの再生を高速化するための完全自己教師型アプローチを提案する。
トレーニングでは、アンダーサンプリングされたデータは、非結合のk空間ドメイン分割に分割される。
画像レベルの自己スーパービジョンでは、元のアンサンプデータから得られる外観整合性を強制する。
論文 参考訳(メタデータ) (2023-02-18T06:11:49Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Transfer Learning Enhanced Generative Adversarial Networks for
Multi-Channel MRI Reconstruction [3.5765797841178597]
深層学習に基づく生成敵ネットワーク(GAN)は、アンダーサンプルMRデータを用いて画像再構成を効果的に行うことができる。
k空間データの保存は臨床フローにはないため、モデルトレーニングのために何万もの生患者データを取得することは困難である。
本研究では,GANモデル(PI-GAN)と移動学習を組み合わせた並列イメージングに基づく3つの新しい応用について検討した。
論文 参考訳(メタデータ) (2021-05-17T21:28:00Z) - Unpaired Deep Learning for Accelerated MRI using Optimal Transport
Driven CycleGAN [33.68599686848292]
最適輸送駆動サイクル一貫性生成対向ネットワーク(OT-cycleGAN)を用いた未ペア深層学習手法を提案する。
提案するOT-cycleGANアーキテクチャは, 特別に設計された最小二乗法を用いて, 最適輸送定式化の双対な定式化から厳密に導かれる。
論文 参考訳(メタデータ) (2020-08-29T12:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。