論文の概要: Lightweight Hypercomplex MRI Reconstruction: A Generalized Kronecker-Parameterized Approach
- arxiv url: http://arxiv.org/abs/2503.05063v1
- Date: Fri, 07 Mar 2025 00:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:21:00.966914
- Title: Lightweight Hypercomplex MRI Reconstruction: A Generalized Kronecker-Parameterized Approach
- Title(参考訳): 軽度高コンプレックスMRI : 一般化Kronecker-Parameterized Approach
- Authors: Haosen Zhang, Jiahao Huang, Yinzhe Wu, Congren Dai, Fanwen Wang, Zhenxuan Zhang, Guang Yang,
- Abstract要約: 現在のディープラーニングモデルは、MRIの再構成を促進するが、しばしばメモリ集約的でリソース制限のシステムには適さない。
本稿では,Kronecker-ized Hypercomplex Neural Networks を用いた軽量MRI再構成モデルを提案する。
- 参考スコア(独自算出の注目度): 2.82222173019955
- License:
- Abstract: Magnetic Resonance Imaging (MRI) is crucial for clinical diagnostics but is hindered by prolonged scan times. Current deep learning models enhance MRI reconstruction but are often memory-intensive and unsuitable for resource-limited systems. This paper introduces a lightweight MRI reconstruction model leveraging Kronecker-Parameterized Hypercomplex Neural Networks to achieve high performance with reduced parameters. By integrating Kronecker-based modules, including Kronecker MLP, Kronecker Window Attention, and Kronecker Convolution, the proposed model efficiently extracts spatial features while preserving representational power. We introduce Kronecker U-Net and Kronecker SwinMR, which maintain high reconstruction quality with approximately 50% fewer parameters compared to existing models. Experimental evaluation on the FastMRI dataset demonstrates competitive PSNR, SSIM, and LPIPS metrics, even at high acceleration factors (8x and 16x), with no significant performance drop. Additionally, Kronecker variants exhibit superior generalization and reduced overfitting on limited datasets, facilitating efficient MRI reconstruction on hardware-constrained systems. This approach sets a new benchmark for parameter-efficient medical imaging models.
- Abstract(参考訳): MRIは臨床診断に欠かせないが、長期のスキャン時間によって妨げられる。
現在のディープラーニングモデルは、MRIの再構成を促進するが、しばしばメモリ集約的でリソース制限のシステムには適さない。
本稿では,Kronecker-Parameterized Hypercomplex Neural Networks を用いた軽量MRI再構成モデルを提案する。
Kronecker MLP、Kronecker Window Attention、Kronecker ConvolutionなどのKroneckerベースのモジュールを統合することで、提案モデルは表現力を保ちながら空間的特徴を効率的に抽出する。
我々はKronecker U-NetとKronecker SwinMRを導入し、既存のモデルに比べて約50%少ないパラメータで高い再構成品質を維持する。
FastMRIデータセットの実験的評価では、高い加速度係数(8x、16x)であっても、PSNR、SSIM、LPIPSの競合指標が顕著に低下しない。
さらに、Kronecker変種は、限られたデータセットに優れた一般化と過度なオーバーフィッティングを示し、ハードウェアに制約のあるシステムでの効率的なMRI再構成を容易にする。
提案手法は,パラメータ効率のよい医用画像モデルのための新しいベンチマークを設定する。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [8.301957310590712]
本研究は,TC-KANReconと命名された,革新的な条件付き拡散モデルを提案する。
Multi-Free U-KAN (MF-UKAN) モジュールと動的クリッピング戦略が組み込まれている。
実験により,提案手法は定性評価と定量的評価の両方において,他のMRI再建法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-11T06:31:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMRは、アンダーサンプルMRI画像スライスからコンディショニング信号を知覚し、対応するフルサンプルMRI画像スライスを生成する。
我々は,MICCAI 2023 Cardiac MRI Restruction Challengeデータセットを用いたDiffCMRとT1/T2マッピングタスクの検証を行った。
その結果,本手法は従来の手法をはるかに上回り,最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2023-12-08T06:11:21Z) - Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction [16.63720411275398]
本研究では、MRI PI再構成のための一般化暗黙的神経表現(INR)に基づくフレームワークを提案する。
フレームワークのINRモデルは、完全にサンプリングされたMR画像を空間座標と以前のボクセル固有の特徴の連続関数として扱う。
公開されているMRIデータセットの実験は、複数の加速度因子で画像を再構成する際の提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-12T09:07:03Z) - IMPORTANT-Net: Integrated MRI Multi-Parameter Reinforcement Fusion
Generator with Attention Network for Synthesizing Absent Data [16.725225424047256]
我々は、新しい$textbfI$ntegrated MRI $textbfM$ulti-$textbfP$arameter reinf$textbfO$rcement fusion generato$textbfR$ wi$textbfT$hを開発した。
IMPORTANT-NetはMRIパラメーターの欠落を発生させ、同等の最先端ネットワークの性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-02-03T14:56:10Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Multi-head Cascaded Swin Transformers with Attention to k-space Sampling
Pattern for Accelerated MRI Reconstruction [16.44971774468092]
我々は,McSTRA(Multi-head Cascaded Swin Transformer)と題する,物理学に基づくスタンドアロン(畳み込みフリー)トランスモデルを提案する。
当モデルでは, 画像と定量的に, 最先端のMRI再建法より有意に優れていた。
論文 参考訳(メタデータ) (2022-07-18T07:21:56Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。