Grouped Sequential Optimization Strategy -- the Application of Hyperparameter Importance Assessment in Deep Learning
- URL: http://arxiv.org/abs/2503.05106v1
- Date: Fri, 07 Mar 2025 03:01:00 GMT
- Title: Grouped Sequential Optimization Strategy -- the Application of Hyperparameter Importance Assessment in Deep Learning
- Authors: Ruinan Wang, Ian Nabney, Mohammad Golbabaee,
- Abstract summary: We implement a novel HPO strategy called 'Sequential Grouping'<n>Our experiments, validated across six additional image classification datasets, demonstrate that incorporating hyper parameter importance assessment (HIA) can significantly accelerate HPO without compromising model performance.
- Score: 1.7778609937758323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperparameter optimization (HPO) is a critical component of machine learning pipelines, significantly affecting model robustness, stability, and generalization. However, HPO is often a time-consuming and computationally intensive task. Traditional HPO methods, such as grid search and random search, often suffer from inefficiency. Bayesian optimization, while more efficient, still struggles with high-dimensional search spaces. In this paper, we contribute to the field by exploring how insights gained from hyperparameter importance assessment (HIA) can be leveraged to accelerate HPO, reducing both time and computational resources. Building on prior work that quantified hyperparameter importance by evaluating 10 hyperparameters on CNNs using 10 common image classification datasets, we implement a novel HPO strategy called 'Sequential Grouping.' That prior work assessed the importance weights of the investigated hyperparameters based on their influence on model performance, providing valuable insights that we leverage to optimize our HPO process. Our experiments, validated across six additional image classification datasets, demonstrate that incorporating hyperparameter importance assessment (HIA) can significantly accelerate HPO without compromising model performance, reducing optimization time by an average of 31.9\% compared to the conventional simultaneous strategy.
Related papers
- ULTHO: Ultra-Lightweight yet Efficient Hyperparameter Optimization in Deep Reinforcement Learning [50.53705050673944]
We propose ULTHO, an ultra-lightweight yet powerful framework for fast HPO in deep RL within single runs.
Specifically, we formulate the HPO process as a multi-armed bandit with clustered arms (MABC) and link it directly to long-term return optimization.
We test ULTHO on benchmarks including ALE, Procgen, MiniGrid, and PyBullet.
arXiv Detail & Related papers (2025-03-08T07:03:43Z) - HyperQ-Opt: Q-learning for Hyperparameter Optimization [0.0]
This paper presents a novel perspective on HPO by formulating it as a sequential decision-making problem and leveraging Q-learning, a reinforcement learning technique.<n>The approaches are evaluated for their ability to find optimal or near-optimal configurations within a limited number of trials.<n>By shifting the paradigm toward policy-based optimization, this work contributes to advancing HPO methods for scalable and efficient machine learning applications.
arXiv Detail & Related papers (2024-12-23T18:22:34Z) - Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction [71.81851971324187]
This work introduces Hierarchical Preference Optimization (HPO), a novel approach to hierarchical reinforcement learning (HRL)
HPO addresses non-stationarity and infeasible subgoal generation issues when solving complex robotic control tasks.
Experiments on challenging robotic navigation and manipulation tasks demonstrate impressive performance of HPO, where it shows an improvement of up to 35% over the baselines.
arXiv Detail & Related papers (2024-11-01T04:58:40Z) - Efficient Hyperparameter Importance Assessment for CNNs [1.7778609937758323]
This paper aims to quantify the importance weights of some hyperparameters in Convolutional Neural Networks (CNNs) with an algorithm called N-RReliefF.
We conduct an extensive study by training over ten thousand CNN models across ten popular image classification datasets.
arXiv Detail & Related papers (2024-10-11T15:47:46Z) - Hyperparameter Optimization Can Even be Harmful in Off-Policy Learning and How to Deal with It [20.312864152544954]
We show that naively applying an unbiased estimator of the generalization performance as a surrogate objective in HPO can cause an unexpected failure.
We propose simple and computationally efficient corrections to the typical HPO procedure to deal with the aforementioned issues simultaneously.
arXiv Detail & Related papers (2024-04-23T14:34:16Z) - PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning [49.92394599459274]
We propose PriorBand, an HPO algorithm tailored to Deep Learning (DL) pipelines.
We show its robustness across a range of DL benchmarks and show its gains under informative expert input and against poor expert beliefs.
arXiv Detail & Related papers (2023-06-21T16:26:14Z) - Two-step hyperparameter optimization method: Accelerating hyperparameter
search by using a fraction of a training dataset [0.15420205433587747]
We present a two-step HPO method as a strategic solution to curbing computational demands and wait times.
We present our recent application of the two-step HPO method to the development of neural network emulators for aerosol activation.
arXiv Detail & Related papers (2023-02-08T02:38:26Z) - FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization [50.12374973760274]
We propose and implement a benchmark suite FedHPO-B that incorporates comprehensive FL tasks, enables efficient function evaluations, and eases continuing extensions.
We also conduct extensive experiments based on FedHPO-B to benchmark a few HPO methods.
arXiv Detail & Related papers (2022-06-08T15:29:10Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
Open Challenges [5.139260825952818]
This paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing.
It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.
arXiv Detail & Related papers (2021-07-13T04:55:47Z) - Cost-Efficient Online Hyperparameter Optimization [94.60924644778558]
We propose an online HPO algorithm that reaches human expert-level performance within a single run of the experiment.
Our proposed online HPO algorithm reaches human expert-level performance within a single run of the experiment, while incurring only modest computational overhead compared to regular training.
arXiv Detail & Related papers (2021-01-17T04:55:30Z) - HyperSTAR: Task-Aware Hyperparameters for Deep Networks [52.50861379908611]
HyperSTAR is a task-aware method to warm-start HPO for deep neural networks.
It learns a dataset (task) representation along with the performance predictor directly from raw images.
It evaluates 50% less configurations to achieve the best performance compared to existing methods.
arXiv Detail & Related papers (2020-05-21T08:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.