論文の概要: Interpersonal Memory Matters: A New Task for Proactive Dialogue Utilizing Conversational History
- arxiv url: http://arxiv.org/abs/2503.05150v1
- Date: Fri, 07 Mar 2025 05:19:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:22:24.309811
- Title: Interpersonal Memory Matters: A New Task for Proactive Dialogue Utilizing Conversational History
- Title(参考訳): 対人記憶の課題 : 会話の歴史を生かした対話のための新しい課題
- Authors: Bowen Wu, Wenqing Wang, Haoran Li, Ying Li, Jingsong Yu, Baoxun Wang,
- Abstract要約: メモリ・アウェア・プロアクティブ・ダイアログ(MapDia)という新しいタスクを導入する。
そのタスクにより、自動データ構築法を提案し、中国初のメモリ対応プロアクティブデータセット(ChMapData)を作成する。
さらに、トピック要約、トピック検索、アクティブなトピックシフト検出と生成の3つのモジュールを特徴とする、検索用拡張生成(RAG)に基づくジョイントフレームワークを導入する。
- 参考スコア(独自算出の注目度): 13.389395397698035
- License:
- Abstract: Proactive dialogue systems aim to empower chatbots with the capability of leading conversations towards specific targets, thereby enhancing user engagement and service autonomy. Existing systems typically target pre-defined keywords or entities, neglecting user attributes and preferences implicit in dialogue history, hindering the development of long-term user intimacy. To address these challenges, we take a radical step towards building a more human-like conversational agent by integrating proactive dialogue systems with long-term memory into a unified framework. Specifically, we define a novel task named Memory-aware Proactive Dialogue (MapDia). By decomposing the task, we then propose an automatic data construction method and create the first Chinese Memory-aware Proactive Dataset (ChMapData). Furthermore, we introduce a joint framework based on Retrieval Augmented Generation (RAG), featuring three modules: Topic Summarization, Topic Retrieval, and Proactive Topic-shifting Detection and Generation, designed to steer dialogues towards relevant historical topics at the right time. The effectiveness of our dataset and models is validated through both automatic and human evaluations. We release the open-source framework and dataset at https://github.com/FrontierLabs/MapDia.
- Abstract(参考訳): アクティブな対話システムは、チャットボットに特定のターゲットに向けて会話を導く能力を与え、ユーザエンゲージメントとサービスの自律性を高めることを目的としている。
既存のシステムは、通常、事前に定義されたキーワードやエンティティをターゲットとし、対話履歴に暗黙的にユーザー属性や好みを無視し、長期的なユーザ親密性の開発を妨げる。
これらの課題に対処するため,我々は,長期記憶とプロアクティブ対話システムを統合することにより,より人間的な対話エージェントを構築するための根本的一歩を踏み出した。
具体的には、メモリ・アウェア・プロアクティブ・ダイアログ(MapDia)と呼ばれる新しいタスクを定義する。
タスクを分解することで、自動データ構築法を提案し、中国初のメモリ対応Proactive Dataset(ChMapData)を作成する。
さらに, トピック要約, トピック検索, プロアクティブなトピックシフト検出と生成の3つのモジュールを対象とし, 関連する歴史的トピックに対する対話を適切なタイミングで行うための, 検索機能強化(RAG)に基づく共同フレームワークを導入する。
我々のデータセットとモデルの有効性は、自動評価と人的評価の両方を通して検証される。
オープンソースフレームワークとデータセットはhttps://github.com/FrontierLabs/MapDia.comで公開しています。
関連論文リスト
- REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
本稿では、21日間のメッセージアプリ対話のコーパスであるREALTALKを紹介する。
EI属性とペルソナの整合性を比較し,現実世界の対話による課題を理解する。
その結果,モデルでは対話履歴のみからユーザをシミュレートすることが困難であり,特定のユーザチャットの微調整はペルソナのエミュレーションを改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T20:29:01Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging
Knowledge Graphs [15.876075659237722]
Multi-Passage to Dialogue (MP2D) は、自然なトピック遷移を伴う質問応答データセットを生成する。
MP2Dは対話内のトピックの流れをマッピングし、人間の会話のダイナミクスを効果的に反映する。
本研究では,トピックシフト対話のための新しいベンチマークTS-WikiDialogを紹介する。
論文 参考訳(メタデータ) (2024-03-09T06:28:48Z) - Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
我々は,高品質で長期的な対話を生成するための,マシン・ヒューマン・パイプラインを導入する。
我々は、各エージェントに画像の共有と反応の能力を持たせる。
生成した会話は、長距離一貫性のために人間のアノテーションによって検証され、編集される。
論文 参考訳(メタデータ) (2024-02-27T18:42:31Z) - History-Aware Hierarchical Transformer for Multi-session Open-domain
Dialogue System [59.78425104243993]
マルチセッションオープンドメイン対話のための履歴認識階層変換器(HAHT)を提案する。
HAHTは歴史会話の長期記憶を維持し、歴史情報を利用して現在の会話状況を理解する。
大規模マルチセッション会話データセットの実験結果は,提案したHAHTモデルがベースラインモデルより一貫して優れていることを示唆している。
論文 参考訳(メタデータ) (2023-02-02T06:54:33Z) - Adapting Task-Oriented Dialogue Models for Email Conversations [4.45709593827781]
本稿では,対話モデルの最新開発を長文会話に適用できる効果的な伝達学習フレームワーク(EMToD)を提案する。
提案するEMToDフレームワークは,事前学習した言語モデルに対する意図検出性能を45%向上し,タスク指向の電子メール会話において,事前学習した対話モデルに対する意図検出性能を30%向上することを示す。
論文 参考訳(メタデータ) (2022-08-19T16:41:34Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - Target-Guided Dialogue Response Generation Using Commonsense and Data
Augmentation [32.764356638437214]
ターゲット誘導応答生成のための新しい手法を提案する。
また,既存の対話データセットをターゲット誘導生成のために再利用する手法を提案する。
我々の作業は、一般的に、対話システムの設計者が、システムが生み出す会話をより制御できるようにします。
論文 参考訳(メタデータ) (2022-05-19T04:01:40Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - Exploring Recurrent, Memory and Attention Based Architectures for
Scoring Interactional Aspects of Human-Machine Text Dialog [9.209192502526285]
本稿は、複数のニューラルアーキテクチャを調べるために、この方向の以前の研究に基づいている。
我々は,クラウドベースの対話システムと対話する人間の学習者からテキストダイアログの対話データベース上で実験を行う。
複数のアーキテクチャの融合は、専門家間の合意に比較して、我々の自動スコアリングタスクにおいて有能に機能することがわかった。
論文 参考訳(メタデータ) (2020-05-20T03:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。