論文の概要: Target-Guided Dialogue Response Generation Using Commonsense and Data
Augmentation
- arxiv url: http://arxiv.org/abs/2205.09314v1
- Date: Thu, 19 May 2022 04:01:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-21 06:10:16.165091
- Title: Target-Guided Dialogue Response Generation Using Commonsense and Data
Augmentation
- Title(参考訳): Commonsense と Data Augmentation を用いた目標誘導対話応答生成
- Authors: Prakhar Gupta, Harsh Jhamtani, Jeffrey P. Bigham
- Abstract要約: ターゲット誘導応答生成のための新しい手法を提案する。
また,既存の対話データセットをターゲット誘導生成のために再利用する手法を提案する。
我々の作業は、一般的に、対話システムの設計者が、システムが生み出す会話をより制御できるようにします。
- 参考スコア(独自算出の注目度): 32.764356638437214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Target-guided response generation enables dialogue systems to smoothly
transition a conversation from a dialogue context toward a target sentence.
Such control is useful for designing dialogue systems that direct a
conversation toward specific goals, such as creating non-obtrusive
recommendations or introducing new topics in the conversation. In this paper,
we introduce a new technique for target-guided response generation, which first
finds a bridging path of commonsense knowledge concepts between the source and
the target, and then uses the identified bridging path to generate transition
responses. Additionally, we propose techniques to re-purpose existing dialogue
datasets for target-guided generation. Experiments reveal that the proposed
techniques outperform various baselines on this task. Finally, we observe that
the existing automated metrics for this task correlate poorly with human
judgement ratings. We propose a novel evaluation metric that we demonstrate is
more reliable for target-guided response evaluation. Our work generally enables
dialogue system designers to exercise more control over the conversations that
their systems produce.
- Abstract(参考訳): 目標指示応答生成により、対話システムは対話コンテキストから対象文へ会話をスムーズに移行することができる。
このような制御は、非邪魔なレコメンデーションの作成や会話に新しいトピックを導入するなど、特定の目標に向けて会話を指示する対話システムの設計に有用である。
本稿では,まずソースとターゲット間の共通知識概念の橋渡しパスを探索し,識別された橋渡しパスを用いて遷移応答を生成する,目標誘導応答生成のための新しい手法を提案する。
さらに,既存の対話データセットをターゲット誘導生成のために再利用する手法を提案する。
実験により,提案手法が様々なベースラインよりも優れていることが明らかとなった。
最後に、このタスクの既存の自動メトリクスは、人間の判断基準と相関が低いことを観察する。
我々は,ターゲット誘導応答評価に信頼性の高い新しい評価指標を提案する。
我々の作業は、一般的に、対話システムの設計者が、システムが生み出す会話をより制御できるようにする。
関連論文リスト
- Target-constrained Bidirectional Planning for Generation of
Target-oriented Proactive Dialogue [11.338393954848632]
ターゲット指向対話生成のための効果的な対話計画に着目する。
認知科学における意思決定理論に着想を得て,新たな目標制約型双方向計画手法を提案する。
我々のアルゴリズムは、様々なベースラインモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-10T02:14:24Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - Interactive Evaluation of Dialog Track at DSTC9 [8.2208199207543]
第9回ダイアログ・システム・テクノロジー・チャレンジで対話的ダイアログ・トラックの評価が導入された。
本稿では,方法論と結果を含むトラックの概要について述べる。
論文 参考訳(メタデータ) (2022-07-28T22:54:04Z) - Achieving Conversational Goals with Unsupervised Post-hoc Knowledge
Injection [37.15893335147598]
現在のニューラルダイアログモデルの制限は、生成された応答における特異性と情報性の欠如に悩まされる傾向があることである。
本稿では,対話履歴と既存の対話モデルから初期応答の両方を条件とした,多様な知識スニペットの集合を検索する,ポストホックな知識注入手法を提案する。
我々は,各検索したスニペットを,勾配に基づく復号法を用いて初期応答に個別に注入し,教師なしランキングステップで最終応答を選択する複数の候補応答を構築する。
論文 参考訳(メタデータ) (2022-03-22T00:42:27Z) - Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue
Systems [109.16553492049441]
よりスケーラブルで一般化可能な対話システムに知識推論機能を組み込む新しい手法を提案する。
我々の知識を最大限に活用するために、変圧器モデルが微分可能な知識グラフを解析して応答を生成するのは、これが初めてである。
論文 参考訳(メタデータ) (2022-03-20T17:51:49Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
軽量アダプタで事前学習した言語モデルに事前知識を注入し、検索プロセスをバイパスする KnowExpert を提案する。
実験結果から,KnowExpertは検索ベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2021-05-13T12:33:23Z) - Controlling Dialogue Generation with Semantic Exemplars [55.460082747572734]
本稿では,経験的応答に現れる意味的フレームを用いて生成をガイドする,経験的対話生成モデルEDGEを提案する。
単語自体の単語ではなく、経験者の意味的フレームに基づく対話生成の制御により、生成した応答の一貫性が向上することを示す。
論文 参考訳(メタデータ) (2020-08-20T17:02:37Z) - Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue
Systems [18.375851346138155]
Seq2seqのニューラルレスポンス生成アプローチは、生成されたレスポンスの内容やスタイルを制御するための明確なメカニズムを持っていない。
本稿では、対話ポリシーを用いて、アクションプランの形式でターゲット応答の内容とスタイルを計画する。
文レベルで動作させる基本対話ポリシーは,ターンレベル生成よりも応答性がよいことを示す。
論文 参考訳(メタデータ) (2020-05-26T06:09:57Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z) - Dynamic Knowledge Routing Network For Target-Guided Open-Domain
Conversation [79.7781436501706]
本稿では,粗いキーワードを導入することで,システム応答の意図した内容を制御する構造的アプローチを提案する。
また,対話を円滑な目標達成に導くために,より高い成功率で対話を誘導する新たな二重談話レベルの目標誘導戦略を提案する。
論文 参考訳(メタデータ) (2020-02-04T09:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。