論文の概要: Generative Trajectory Stitching through Diffusion Composition
- arxiv url: http://arxiv.org/abs/2503.05153v1
- Date: Fri, 07 Mar 2025 05:22:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:23:02.476114
- Title: Generative Trajectory Stitching through Diffusion Composition
- Title(参考訳): 拡散合成による生成軌道スティッチ
- Authors: Yunhao Luo, Utkarsh A. Mishra, Yilun Du, Danfei Xu,
- Abstract要約: CompDiffuserは、これまで見てきたタスクから短い軌跡を合成的に縫い合わせることで、新しいタスクを解決できる新しい生成的アプローチである。
我々は,さまざまな環境サイズ,エージェント状態次元,軌道タイプ,データ品質のトレーニングなど,さまざまな課題のベンチマークタスクについて実験を行い,CompDiffuserが既存手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 29.997765496994457
- License:
- Abstract: Effective trajectory stitching for long-horizon planning is a significant challenge in robotic decision-making. While diffusion models have shown promise in planning, they are limited to solving tasks similar to those seen in their training data. We propose CompDiffuser, a novel generative approach that can solve new tasks by learning to compositionally stitch together shorter trajectory chunks from previously seen tasks. Our key insight is modeling the trajectory distribution by subdividing it into overlapping chunks and learning their conditional relationships through a single bidirectional diffusion model. This allows information to propagate between segments during generation, ensuring physically consistent connections. We conduct experiments on benchmark tasks of various difficulties, covering different environment sizes, agent state dimension, trajectory types, training data quality, and show that CompDiffuser significantly outperforms existing methods.
- Abstract(参考訳): 長期計画のための効果的な軌道縫合は、ロボットによる意思決定において重要な課題である。
拡散モデルは計画における有望性を示しているが、トレーニングデータに見られるようなタスクの解決に限られている。
従来のタスクから短いトラジェクトリチャンクを合成的に縫合することで,新しいタスクを解くことができる新しい生成手法であるCompDiffuserを提案する。
我々の重要な洞察は、重なり合うチャンクに分割し、1つの双方向拡散モデルを通して条件関係を学習することで軌道分布をモデル化することである。
これにより、生成中のセグメント間で情報を伝達し、物理的に一貫した接続を確保することができる。
我々は,さまざまな環境サイズ,エージェント状態次元,軌道タイプ,データ品質のトレーニングなど,さまざまな課題のベンチマークタスクについて実験を行い,CompDiffuserが既存手法よりも優れていることを示す。
関連論文リスト
- Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
複数のエキスパートモデルをマージすることは、元のデータにアクセスせずにマルチタスク学習を実行するための有望なアプローチを提供する。
既存の手法は必然的にタスク固有の情報を破棄し、競合の原因となっているが、パフォーマンスには不可欠である。
我々の手法は従来の手法より一貫して優れており、視覚領域とNLP領域の両方において様々なアーキテクチャやタスクにまたがって最先端の結果が得られます。
論文 参考訳(メタデータ) (2025-01-02T12:45:21Z) - Do We Need to Design Specific Diffusion Models for Different Tasks? Try ONE-PIC [77.8851460746251]
本稿では,超音速拡散モデルに対する単純,効率的,汎用的なアプローチを提案する。
ONE-PICは、追加モジュールを導入することなく、事前訓練された拡散モデルにおける継承された生成能力を向上する。
本手法は,適応プロセスの合理化を図り,低コストで優れた性能を実現する,シンプルで効率的な手法である。
論文 参考訳(メタデータ) (2024-12-07T11:19:32Z) - Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
高度な埋め込みモデルは、通常、大規模マルチタスクデータと複数のタスクをまたいだ共同トレーニングを用いて開発される。
これらの課題を克服するために、独立に訓練されたモデルを組み合わせて勾配の衝突を緩和し、データ分散のバランスをとるモデルマージングについて検討する。
本稿では,勾配降下を用いたタスクベクトル空間内の最適モデル組合せを効率的に探索する新たな手法であるSelf Positioningを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:39:21Z) - TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction [7.3292387742640415]
本稿では,よりリッチなトレーニングダイナミックス情報を,原型的コントラスト学習フレームワークに組み込むことを提案する。
我々は,2つの大規模自然主義データセットを用いたアプローチの実証評価を行った。
論文 参考訳(メタデータ) (2024-04-18T23:12:46Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Phasic Content Fusing Diffusion Model with Directional Distribution
Consistency for Few-Shot Model Adaption [73.98706049140098]
本稿では,方向分布の整合性を損なう少数ショット拡散モデルを用いた新しいファシックコンテンツを提案する。
具体的には、ファシックコンテンツ融合を用いたファシックトレーニング戦略を設計し、tが大きければ、モデルがコンテンツやスタイル情報を学ぶのに役立てる。
最後に、ドメイン適応時の構造整合性を高めるクロスドメイン構造ガイダンス戦略を提案する。
論文 参考訳(メタデータ) (2023-09-07T14:14:11Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - From Points to Functions: Infinite-dimensional Representations in
Diffusion Models [23.916417852496608]
拡散に基づく生成モデルは、非構造的雑音を複雑な対象分布に反復的に伝達することを学ぶ。
異なる時間ステップからの情報コンテンツを組み合わせることで、下流のタスクをより正確に表現できることが示される。
論文 参考訳(メタデータ) (2022-10-25T05:30:53Z) - Mixture of basis for interpretable continual learning with distribution
shifts [1.6114012813668934]
データ分散のシフトを伴う環境での継続的な学習は、いくつかの現実世界のアプリケーションでは難しい問題である。
本稿では,この問題設定に対処するために,ベイシモデル(MoB)の混合方式を提案する。
論文 参考訳(メタデータ) (2022-01-05T22:53:15Z) - Dense Unsupervised Learning for Video Segmentation [49.46930315961636]
ビデオオブジェクトセグメンテーション(VOS)のための教師なし学習のための新しいアプローチを提案する。
これまでの研究とは異なり、我々の定式化によって、完全に畳み込みの仕組みで、密集した特徴表現を直接学習することができる。
我々の手法は、トレーニングデータや計算能力が大幅に少ないにもかかわらず、以前の作業のセグメンテーション精度を超える。
論文 参考訳(メタデータ) (2021-11-11T15:15:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。