Ensemble Debiasing Across Class and Sample Levels for Fairer Prompting Accuracy
- URL: http://arxiv.org/abs/2503.05157v3
- Date: Wed, 26 Mar 2025 10:19:08 GMT
- Title: Ensemble Debiasing Across Class and Sample Levels for Fairer Prompting Accuracy
- Authors: Ruixi Lin, Ziqiao Wang, Yang You,
- Abstract summary: Language models are strong few-shot learners and achieve good overall accuracy in text classification tasks.<n>We believe that the pursuit of overall accuracy should not come from enriching the strong classes, but from raising up the weak ones.<n>We propose a Heaviside step function based ensemble debiasing method, which enables flexible rectifications of in-context learned class probabilities.
- Score: 17.610305828703957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models are strong few-shot learners and achieve good overall accuracy in text classification tasks, masking the fact that their results suffer from great class accuracy imbalance. We believe that the pursuit of overall accuracy should not come from enriching the strong classes, but from raising up the weak ones. To address the imbalance, we propose a Heaviside step function based ensemble debiasing method, which enables flexible rectifications of in-context learned class probabilities at both class and sample levels. Evaluations with Llama-2-13B on seven text classification benchmarks show that our approach achieves state-of-the-art overall accuracy gains with balanced class accuracies. More importantly, we perform analyses on the resulted probability correction scheme, showing that sample-level corrections are necessary to elevate weak classes. Due to effectively correcting weak classes, our method also brings significant performance gains to a larger model variant, Llama-2-70B, especially on a biomedical domain task, further demonstrating the necessity of ensemble debiasing at both levels.
Related papers
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - COBias and Debias: Balancing Class Accuracies for Language Models in Inference Time via Nonlinear Integer Programming [12.287692969438169]
This paper investigates a fundamental inference-time problem in language models: imbalanced class accuracies.<n>We find what's underneath the issue is a tendency to over-predict some classes while under-predicting some others.<n>We show it can be effectively mitigated via inference-time optimization.
arXiv Detail & Related papers (2024-05-13T10:30:33Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
Few-shot class-incremental learning aims at recognizing novel classes continually with limited novel class samples.
Recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions.
We propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes.
arXiv Detail & Related papers (2024-02-01T10:37:41Z) - Class-attribute Priors: Adapting Optimization to Heterogeneity and
Fairness Objective [54.33066660817495]
Modern classification problems exhibit heterogeneities across individual classes.
We propose CAP: An effective and general method that generates a class-specific learning strategy.
We show that CAP is competitive with prior art and its flexibility unlocks clear benefits for fairness objectives beyond balanced accuracy.
arXiv Detail & Related papers (2024-01-25T17:43:39Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
achieving optimal average accuracy comes at the cost of significantly hurting individual class accuracy by as much as 20% on ImageNet.
We present a framework for understanding how DA interacts with class-level learning dynamics.
We show that simple class-conditional augmentation strategies improve performance on the negatively affected classes.
arXiv Detail & Related papers (2023-12-07T18:37:43Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
We propose a novel uncertainty-guided class imbalance learning framework for imbalanced social event detection tasks.
Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.
arXiv Detail & Related papers (2023-10-30T03:32:04Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
Regression tasks in computer vision are often formulated into classification by quantizing the target space into classes.
The majority of training samples lie in a head range of target values, while a minority of samples span a usually larger tail range.
We propose to construct hierarchical classifiers for solving imbalanced regression tasks.
Our novel hierarchical classification adjustment (HCA) for imbalanced regression shows superior results on three diverse tasks.
arXiv Detail & Related papers (2023-10-26T04:54:39Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
We propose BAM, a novel two-stage training algorithm.
In the first stage, the model is trained using a bias amplification scheme via introducing a learnable auxiliary variable for each training sample.
In the second stage, we upweight the samples that the bias-amplified model misclassifies, and then continue training the same model on the reweighted dataset.
arXiv Detail & Related papers (2023-09-13T04:40:08Z) - Class-Imbalanced Graph Learning without Class Rebalancing [62.1368829847041]
Class imbalance is prevalent in real-world node classification tasks and poses great challenges for graph learning models.
In this work, we approach the root cause of class-imbalance bias from an topological paradigm.
We devise a lightweight topological augmentation framework BAT to mitigate the class-imbalance bias without class rebalancing.
arXiv Detail & Related papers (2023-08-27T19:01:29Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
Semi-supervised learning (SSL) has shown great promise in leveraging unlabeled data to improve model performance.
We consider a more realistic and challenging setting called imbalanced SSL, where imbalanced class distributions occur in both labeled and unlabeled data.
We study a simple yet overlooked baseline -- SimiS -- which tackles data imbalance by simply supplementing labeled data with pseudo-labels.
arXiv Detail & Related papers (2022-11-20T21:18:41Z) - Learning Sample Reweighting for Accuracy and Adversarial Robustness [15.591611864928659]
We propose a novel adversarial training framework that learns to reweight the loss associated with individual training samples based on a notion of class-conditioned margin.
Our approach consistently improves both clean and robust accuracy compared to related methods and state-of-the-art baselines.
arXiv Detail & Related papers (2022-10-20T18:25:11Z) - Learning to Adapt Classifier for Imbalanced Semi-supervised Learning [38.434729550279116]
Pseudo-labeling has proven to be a promising semi-supervised learning (SSL) paradigm.
Existing pseudo-labeling methods commonly assume that the class distributions of training data are balanced.
In this work, we investigate pseudo-labeling under imbalanced semi-supervised setups.
arXiv Detail & Related papers (2022-07-28T02:15:47Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Selective Classification Can Magnify Disparities Across Groups [89.14499988774985]
We find that while selective classification can improve average accuracies, it can simultaneously magnify existing accuracy disparities.
Increasing abstentions can even decrease accuracies on some groups.
We train distributionally-robust models that achieve similar full-coverage accuracies across groups and show that selective classification uniformly improves each group.
arXiv Detail & Related papers (2020-10-27T08:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.