Leveraging Spatial Context for Positive Pair Sampling in Histopathology Image Representation Learning
- URL: http://arxiv.org/abs/2503.05170v2
- Date: Mon, 21 Jul 2025 05:36:36 GMT
- Title: Leveraging Spatial Context for Positive Pair Sampling in Histopathology Image Representation Learning
- Authors: Willmer Rafell Quinones Robles, Sakonporn Noree, Young Sin Ko, Bryan Wong, Jongwoo Kim, Mun Yong Yi,
- Abstract summary: Multiple instance learning and self-supervised learning have emerged as promising alternatives to traditional annotation-based methods.<n>We propose a spatial context-driven positive pair sampling strategy that enhances SSL by leveraging the morphological coherence of spatially adjacent patches.<n>Our method is modular and compatible with established joint embedding SSL frameworks, including Barlow Twins, BYOL, VICReg, and DINOv2.
- Score: 2.0451307225357427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has shown strong potential in cancer classification from whole-slide images (WSIs), but the need for extensive expert annotations often limits its success. Annotation-free approaches, such as multiple instance learning (MIL) and self-supervised learning (SSL), have emerged as promising alternatives to traditional annotation-based methods. However, conventional SSL methods typically rely on synthetic data augmentations, which may fail to capture the spatial structure critical to histopathology. In this work, we propose a spatial context-driven positive pair sampling strategy that enhances SSL by leveraging the morphological coherence of spatially adjacent patches within WSIs. Our method is modular and compatible with established joint embedding SSL frameworks, including Barlow Twins, BYOL, VICReg, and DINOv2. We evaluate its effectiveness on both slide-level classification using MIL and patch-level linear probing. Experiments across four datasets demonstrate consistent performance improvements, with accuracy gains of 5\% to 10\% compared to standard augmentation-based sampling. These findings highlight the value of spatial context in improving representation learning for computational pathology and provide a biologically meaningful enhancement for pretraining models in annotation-limited settings. The code is available at https://anonymous.4open.science/r/contextual-pairs-E72F/.
Related papers
- Dual Guidance Semi-Supervised Action Detection [71.45023660211145]
We present a semi-supervised approach for spatial-temporal action localization.<n>We introduce a dual guidance network to select better pseudo-bounding boxes.<n>Our framework achieves superior results compared to extended image-based semi-supervised baselines.
arXiv Detail & Related papers (2025-07-28T18:08:36Z) - Contrastive Learning with Synthetic Positives [11.932323457691945]
Contrastive learning with the nearest neighbor has proved to be one of the most efficient self-supervised learning (SSL) techniques.
In this paper, we introduce a novel approach called Contrastive Learning with Synthetic Positives (NCLP)
NCLP utilizes synthetic images, generated by an unconditional diffusion model, as the additional positives to help the model learn from diverse positives.
arXiv Detail & Related papers (2024-08-30T01:47:43Z) - ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation [24.743048965822297]
This paper introduces a novel semi-supervised LiDAR semantic segmentation framework called ItTakesTwo (IT2)<n>IT2 is designed to ensure consistent predictions from peer LiDAR representations, thereby improving the perturbation effectiveness in consistency learning.<n>Results on public benchmarks show that our approach achieves remarkable improvements over the previous state-of-the-art (SOTA) methods in the field.
arXiv Detail & Related papers (2024-07-09T18:26:53Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - NearbyPatchCL: Leveraging Nearby Patches for Self-Supervised Patch-Level
Multi-Class Classification in Whole-Slide Images [10.8479107614771]
Whole-slide image (WSI) analysis plays a crucial role in cancer diagnosis and treatment.
In this paper, we introduce Nearby Patch Contrastive Learning (NearbyPatchCL), a novel self-supervised learning method.
Our method significantly outperforms the supervised baseline and state-of-the-art SSL methods with top-1 classification accuracy of 87.56%.
arXiv Detail & Related papers (2023-12-12T18:24:44Z) - Improving Representation Learning for Histopathologic Images with
Cluster Constraints [31.426157660880673]
Self-supervised learning (SSL) pretraining strategies are emerging as a viable alternative.
We introduce an SSL framework for transferable representation learning and semantically meaningful clustering.
Our approach outperforms common SSL methods in downstream classification and clustering tasks.
arXiv Detail & Related papers (2023-10-18T21:20:44Z) - Spatiotemporal Self-supervised Learning for Point Clouds in the Wild [65.56679416475943]
We introduce an SSL strategy that leverages positive pairs in both the spatial and temporal domain.
We demonstrate the benefits of our approach via extensive experiments performed by self-supervised training on two large-scale LiDAR datasets.
arXiv Detail & Related papers (2023-03-28T18:06:22Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Patient-level Microsatellite Stability Assessment from Whole Slide
Images By Combining Momentum Contrast Learning and Group Patch Embeddings [6.40476282000118]
Current approaches bypass the WSI high resolution by first classifying small patches extracted from the WSI.
We introduce an effective approach to leverage WSI high resolution information by momentum contrastive learning of patch embeddings.
Our approach achieves up to 7.4% better accuracy compared to the straightforward patch-level classification and patient level aggregation approach.
arXiv Detail & Related papers (2022-08-22T16:31:43Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z) - DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide
Image Classification [9.950131528559211]
We propose a feature distribution guided deep MIL framework for WSI classification and positive patch localization.
Experiments on the CAMELYON16 dataset and the TCGA Lung Cancer dataset show that our method achieves new SOTA for both global classification and positive patch localization tasks.
arXiv Detail & Related papers (2022-06-17T16:04:30Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem.
We propose an innovative Inconsistency-based virtual aDvErial algorithm to further investigate SSL-AL's potential superiority.
Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
arXiv Detail & Related papers (2022-06-07T13:28:43Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z) - On Data-Augmentation and Consistency-Based Semi-Supervised Learning [77.57285768500225]
Recently proposed consistency-based Semi-Supervised Learning (SSL) methods have advanced the state of the art in several SSL tasks.
Despite these advances, the understanding of these methods is still relatively limited.
arXiv Detail & Related papers (2021-01-18T10:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.