DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide
Image Classification
- URL: http://arxiv.org/abs/2206.08861v1
- Date: Fri, 17 Jun 2022 16:04:30 GMT
- Title: DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide
Image Classification
- Authors: Linhao Qu, Xiaoyuan Luo, Shaolei Liu, Manning Wang, Zhijian Song
- Abstract summary: We propose a feature distribution guided deep MIL framework for WSI classification and positive patch localization.
Experiments on the CAMELYON16 dataset and the TCGA Lung Cancer dataset show that our method achieves new SOTA for both global classification and positive patch localization tasks.
- Score: 9.950131528559211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple Instance Learning (MIL) is widely used in analyzing
histopathological Whole Slide Images (WSIs). However, existing MIL methods do
not explicitly model the data distribution, and instead they only learn a
bag-level or instance-level decision boundary discriminatively by training a
classifier. In this paper, we propose DGMIL: a feature distribution guided deep
MIL framework for WSI classification and positive patch localization. Instead
of designing complex discriminative network architectures, we reveal that the
inherent feature distribution of histopathological image data can serve as a
very effective guide for instance classification. We propose a
cluster-conditioned feature distribution modeling method and a pseudo
label-based iterative feature space refinement strategy so that in the final
feature space the positive and negative instances can be easily separated.
Experiments on the CAMELYON16 dataset and the TCGA Lung Cancer dataset show
that our method achieves new SOTA for both global classification and positive
patch localization tasks.
Related papers
- SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification [9.69491390062406]
We propose a novel MIL framework, named SAM-MIL, that emphasizes spatial contextual awareness and explicitly incorporates spatial context.
Our approach includes the design of group feature extraction based on spatial context and a SAM-Guided Group Masking strategy.
Experimental results on the CAMELYON-16 and TCGA Lung Cancer datasets demonstrate that our proposed SAM-MIL model outperforms existing mainstream methods in WSIs classification.
arXiv Detail & Related papers (2024-07-25T01:12:48Z) - cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process [23.266122629592807]
Multiple instance learning (MIL) has been extensively applied to whole slide histoparametric image (WSI) analysis.
The existing aggregation strategy in MIL, which primarily relies on the first-order distance between instances, fails to accurately approximate the true feature distribution of each instance.
We propose a new Bayesian nonparametric framework for multiple instance learning, which adopts a cascade of Dirichlet processes (cDP) to incorporate the instance-to-bag characteristic of the WSIs.
arXiv Detail & Related papers (2024-07-16T07:28:39Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Divide and Adapt: Active Domain Adaptation via Customized Learning [56.79144758380419]
We present Divide-and-Adapt (DiaNA), a new ADA framework that partitions the target instances into four categories with stratified transferable properties.
With a novel data subdivision protocol based on uncertainty and domainness, DiaNA can accurately recognize the most gainful samples.
Thanks to the "divideand-adapt" spirit, DiaNA can handle data with large variations of domain gap.
arXiv Detail & Related papers (2023-07-21T14:37:17Z) - TPMIL: Trainable Prototype Enhanced Multiple Instance Learning for Whole
Slide Image Classification [13.195971707693365]
We develop a Trainable Prototype enhanced deep MIL framework for weakly supervised WSI classification.
Our method is able to reveal the correlations between different tumor subtypes through distances between corresponding trained prototypes.
We test our method on two WSI datasets and it achieves a new SOTA.
arXiv Detail & Related papers (2023-05-01T07:39:19Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Feature Re-calibration based MIL for Whole Slide Image Classification [7.92885032436243]
Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases.
We propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature.
We employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder.
arXiv Detail & Related papers (2022-06-22T07:00:39Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation [29.43532067090422]
We propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning.
Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples.
arXiv Detail & Related papers (2019-04-21T13:39:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.